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Abstract

We report about a discrete feedback protocol to control a superconducting trans-
mon qubit in the σz basis. In the first step the qubit is projectively measured
via the dispersive phase shift of a coherent microwave tone transmitted through
a capacitively coupled coplanar waveguide resonator. Successive single shot read
out with 80% fidelity is enabled by means of a Josephson parametric amplifier
operated in the phase sensitive mode. The resonator output is processed on a field
programmable gate array (FPGA). From the linearly filtered homodyne signal we
infer the qubit state based on a threshold mechanism. Given that measurement
result we are able to trigger a π pulse resonant with the qubit e ↔ g transition
conditioned on either ground (g) or excited state (e).
Tailored to the feedback scheme and in order to better analyze single-shot read
out data a novel histogram application for the FPGA has been designed. We are
able to record time resolved histograms of the resonator output field and directly
correlate measured histograms before and after feedback.
With a qubit relaxation time of ' 940 ns and a delay of 400 ns between state
preparation and feedback operation errors due to qubit decay play a substantial
role. The feedback delay is composed of the time to achieve maximal discrimi-
nation of the qubit states (150 ns) and signal processing on the FPGA (250 ns).
Despite this drawback we achieve state fidelities of 80% for the ground state and
72% for the excited state with the corresponding feedback schemes.
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Chapter 1

Introduction

Quantum information processing is a rapidly emerging field in physical science.
As the name suggests, quantum mechanical systems are studied regarding their
properties of storing and processing information. However, in a real experimental
setup, these systems are never purely quantum. This leads to some undesired phe-
nomena like relaxation and decoherence. On the contrary, coupling to a classical
system is also a topic of primary interest in the context of quantum measurement
and feedback control. While dissipation is closely related to information loss, col-
lecting that information and feeding it back into the system can be used as a tool
to deterministically steer quantum dynamics [Wiseman, 1994].

As opposed to open-loop control where coherent operations are scheduled be-
forehand, closed-loop or feedback control depends on the real-time acquisition of
information about the system [Lloyd, 2000]. This opens up a variety of new pos-
sibilities for coherent control. These include adaptive measurement [Armen et al.,
2002], continuous quantum error correction [Ahn et al., 2002], feedback cooling
[Steixner et al., 2005], stabilization of Fock states in an optical cavity [Sayrin et al.,
2011], maintaining Rabi oscillations in a superconducting qubit [Vijay et al., 2012]
and stabilization of pure states of a two level atom [Wang and Wiseman, 2001;
Risté et al., 2012a].

Measurement in quantum mechanics is a particularly delicate topic due to its
projective and stochastic nature [Wiseman and Milburn, 2009]. The strength of a
measurement is not only a measure for the rate at which information is extracted
from the system, but also determines the speed of decoherence, that is the emer-
gence of classicality. For the purpose of feedback the choice is between strong
measurement with discrete feedback operation and weak measurement with con-
tinuous feedback [Doherty et al., 2001]. In this thesis the latter approach has been
pursued, partly because it is more tractable and also due to the prospect of future
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CHAPTER 1. INTRODUCTION 5

applications to fill gaps in open loop control.

That motivation is best explained in the context of the experimental architec-
ture used in this thesis, circuit Quantum Electrodynamics [Wallraff et al., 2004;
Blais et al., 2007]. Quantum information processing with superconducting circuits
and microwave photons has been extensively studied and refined for open-loop
applications [Eichler et al., 2012b; Fedorov et al., 2012; Baur et al., 2012; Steffen
et al., 2012]. In particular high fidelity single shot read out [Vijay et al., 2011] by
means of parametric amplification [Yurke and Buks, 2006] offers direct application
of discrete feedback control in quantum error correction and quantum teleportation
[Bennett et al., 1993]. Quantum teleportation features a Bell basis measurement
with four possible outcomes each of which giving rise to another qubit rotation
that retrieves the teleported state from the corresponding post-measurement state.
The feedback scheme designed here handles only binary decisions but may be re-
garded as a first step towards an implementation of the full solution.

This thesis is structured as follows. In the subsequent second chapter, a review
of circuit quantum electrodynamics is given. Particular emphasis is laid on the
dispersive interaction of a single qubit with a capacitively coupled resonator. This
interaction allows one to perform a quantum non demolition measurement of the
qubit state via homodyne detection of the resonator output. Moreover the concept
of parametric amplification is introduced as a tool for nearly quantum-limited
amplification.
Afterwards, in chapter three, the notion of feedback control in quantum mechanics
is discussed. This thesis is concerned with discrete feedback operations conditioned
on information extracted from a previous measurement record. Next to quantum
measurement theory this involves linear or nonlinear (Bayesian) filtering in order
to make an optimal estimate for the qubit state.
The fourth chapter gives account of the experimental setup and the digital signal
processing hardware that were used to establish a discrete feedback scheme of a
single transmon qubit. Signal processing encompasses both the feedback loop and
data acquisition.
First results obtained with this apparatus are presented and analyzed in chapter
five. The thesis ends with a conclusion in chapter six.



Chapter 2

Circuit Quantum Electrodynamics

The study of the interaction between light and matter on the atom – photon level
is known as Cavity Quantum Electrodynamics (QED) [Walls and Milburn, 2008;
Cohen-Tannoudji et al., 1998]. Usually, quantum coherence is established on mi-
croscopic degrees of freedom such as photons, ions or spins. Contrarily, Circuit
Quantum Electrodynamics [Wallraff et al., 2004; Blais et al., 2004] is a mesoscopic
scale technique with superconducting artificial atoms coupled to electromagnetic
field modes of a microwave resonator. The system is realized as an integrated
circuit placed on a chip. This is deemed to be a promising scheme for quantum in-
formation processing [Devoret et al., 2007] due to high coupling efficiency, tunable
resonances and scalability. Quantum bits (qubits) are realized in the subsystem
of ground and first excited state of the atom. Coherent control and read-out is
implemented by applying narrow-bandwidth microwave frequency tones to either
qubit or resonator.

The essential nonlinearity for artificial atom design is provided by Josephson
junctions. Macroscopic quantum coherence requires ultra-low dissipation and noise
which is achieved by superconducting materials operated at extremely low tem-
peratures in the milli-Kelvin (mK) range. In the measurements presented in this
thesis, a charge-insensitive transmon qubit design was used [Koch et al., 2007].

2.1 Qubit-resonator dynamics

The joint system of a two-level system coupled to a single mode of an electro-
magnetic field is well-described by the Jaynes-Cummings model [Cohen-Tannoudji
et al., 1998; Walls and Milburn, 2008]. For a qubit with transition frequency ωa,
a resonator mode with resonance frequency ωr and atom-field coupling strength g
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CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS 7

we have the hamiltonian

H = ~ωr
(
a†a+

1

2

)
+

1

2
~ωaσz + ~g

(
a+ a†

)
σx . (2.1)

Here, a and a† are the annihilation and creation operators of the resonator mode,
the σi are the Pauli matrices in the Hilbert space of the qubit. External sources
of radiation are modeled with interaction terms

Hr
d = a εd(t)e

iωdt + a† ε∗d(t)e
−iωdt

for the resonator and

Ha
d = σ− εd(t)e

iωdt + σ+ ε∗d(t)e
−iωdt

for the qubit. In both cases ε(t) is the drive field pulse envelope and ωd is the
carrier frequency. σ± are the raising and lowering operators for the qubit effecting
the transitions g ↔ e between the ground (g) and excited (e) state of the qubit.
Typically ωd is chosen to match the transition frequency of either system such that
in the terms become stationary in the interaction frame.

If qubit and resonator are tuned into resonance (ωa ≈ ωr), then the eigenstates
of the Jaynes-Cummings Hamiltonian 2.1 are dressed states [Cohen-Tannoudji
et al., 1998]. In this case it is impossible to distinguish between qubit and res-
onator. From a quantum information perspective, however, it is of particular inter-
est to keep them separated. Otherwise coherent control of a single subsystem and
quantum nondemolition measurement (QND) would not be feasible. Thus in the
following we will be concerned with the dispersive regime characterized by qubit-
resonator detunings ∆ = ωa − ωr being much larger than the coupling strength
g: g/∆ � 1. The dispersive Hamiltonian can be obtained from a transformation
of the Hamiltonian 2.1 with the unitary U = exp( g

∆
(a†σ− − aσ+)). Keeping only

linear order in g
∆

this yields [Blais et al., 2004]

H̃ = UHU † = ~
(
ωr + χσz

)
a†a +

~
2

(ωa + χ)σz (2.2)

= ~ωra†a +
~
2

(
ωa + 2χ

(
a†a+

1

2

))
σz (2.3)

Here, the dispersive shift for a pure two level atom would be χ = g2/∆. For the
transmon qubit which also features higher excited states, accurate calculations
yield an effective dispersive shift of [Koch et al., 2007]

χ =
g2EC

∆(EC −∆)
. (2.4)



CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS 8

Here, EC is the charging energy of the transmon which approximately corresponds
to the anharmonicity between first and second excited state. The dispersive shift
χ arises as both a qubit state dependent frequency pull on the resonator (2.2) and
photon number splitting of the qubit frequency (2.3) [Gambetta et al., 2006]. In
the case that number splitting cannot be resolved in spectroscopy due to large
natural linewidth of the qubit, only an average shift ∝ 2〈n〉χ is observed, called
the a.c. Stark shift. We see that in the dispersive limit, the Hamiltonian is ap-
proximately diagonal in the uncoupled basis {|g, n〉, |e, n〉}n. It is important to
note, however, that this approximation breaks down for large numbers of photons
〈n〉 populating the resonator. The scale is defined by the critical photon number
ncrit = ∆2/4g2 such that the necessary condition for the dispersive approximation
becomes 〈n〉 � ncrit.

In the absence of decoherence, or for a closed quantum system, the time evo-
lution of the density matrix is given by the Liouville - von Neumann equation

i~
d ρ

d t
= [H, ρ]. (2.5)

Moving to a rotating frame with unitary propagator U induces the following trans-
formations for operators A or density matrices ρ in the Schrödinger picture:

Ã = U †AU , ρ̃ = U †ρU. (2.6)

Choosing an exponential representation U = exp(−itF/~) with self-adjoint F
yields the following time evolution for ρ̃:

i~
d ρ̃

d t
=
[
H̃ − F, ρ̃

]
. (2.7)

Choosing F appropriately can lead to a dramatic simplification of the equations
of motion because only interaction terms need to be considered.

In an open quantum system, coupling to a classical environment gives rise to
decoherence. In the limit where all information transferred to the environment
is irreversibly lost the system dynamics can be modeled by a Markovian master
equation [Lindblad, 1976]. For the qubit-resonator system, it has the form [Walls
and Milburn, 2008]

d ρ

d t
= − i

~
[H, ρ] + κD[a]ρ+ γ1D[σ−]ρ+

γφ
2
D[σz]ρ = Lρ. (2.8)

Here γ1 = 2π/T1 is the qubit’s relaxation rate with relaxation time T1, γφ is its pure
dephasing rate such that qubit decoherence amounts to γ2 = γ1/2 + γφ = 2π/T2

with decoherence time T2. Decay from the resonator occurs at the rate κ. The total
Hamiltonian including drives is denoted H and D[X]ρ = XρX† − {X†X, ρ}/2 is
the Lindblad superoperator. The total time evolution is captured by the Liouvillian
superoperator L.
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2.2 Cavity-Bloch equations in the dispersive regime

The main advantage of the dispersive regime is that resonator and qubit are essen-
tially decoupled. This is reflected in the fact that σz and a†a commute with the
dispersive Hamiltonian and are thus both constants of the motion. This allows to
perform a QND measurement of the qubit state in the (|e〉, |g〉) basis by measuring
the phase shift of the resonator transmission [Bianchetti et al., 2009]

s(t) =
√
Z~ωrκ 〈a(t)〉 (2.9)

which can be derived by input-output theory [Gardiner and Collett, 1985]. Here Z
is the characteristic impedance of the transmission line capacitively coupled to the
resonator. In practice, the quadrature components I(t) = <s(t) and Q = =s(t)
of the resonator transmission are determined after heterodyne detection with a
local oscillator at frequency ωLO = ωr − ωIF and phase ϕLO. The intermediate
frequency ωIF is typically 25 MHz which matches the bandwidth of subsequent
signal processing electronics (100 MHz). The quadratures are then computed as

I(t) = cos(ωIF t) <
{
s(t)e−iωLOt+iϕLO

}
,

Q(t) = sin(ωIF t) <
{
s(t)e−iωLOt+iϕLO

}
. (2.10)

If a is treated as a Heisenberg observable, the quantum Langevin equation
describing its time evolution subject to an input mode bin is [Gardiner and Collett,
1985]

d a

d t
= −i(ω + χσz)a−

κ

2
a+
√
κbin (2.11)

We consider the input to be a coherent measurement tone with amplitude εm(t)

and transform to a rotating frame at its carrier frequency ωm. By displacing the
cavity mode in the vacuum state to a coherent state |α〉, we obtain the equation
of motion

dα

d t
= −i (∆rm + χσz)α−

κ

2
α− iεm (2.12)

Here ∆rm = ωr − ωm is the detuning between the bare resonator (in the absence
of a qubit) and the measurement tone. In the context of single-shot read-out
by strong, projective measurement, the qubit polarization σz follows a stochastic
evolution, jumping between ±1 each time the qubit decays or is excited. The latter
is negligible at moderate measurement powers and low thermal noise. Qubit decay,
however, occurs at the rate γ1 which implies that decay times τd are exponentially
distributed such that for an initially (t = 0) excited state

σz(t) =

{
1 t < τd

−1 t ≥ τd
(2.13)
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Each discrete value of σz gives rise to another coherent state of the resonator
mode via the equation of motion 2.12. Due to their characteristic frequency shift
χσz they encode the qubit state and are thus called pointer states α± [Walls and
Milburn, 2008]. Entanglement of the qubit state with such pointer states of the
transient field [Gambetta et al., 2008] enables indirect measurement of the qubit as
will be explained in Section 3.2. The solution of equation 2.12 is obtained formally
by Fourier transformation (indicated by F or ̂ )

α(t) = F−1

[
ε̂m(ω)

iκ
2
− (ω + ∆ + χσz)

]
(t) (2.14)

= −i
√

2π
(
εm(t′) ∗ e(−i(∆+χσz)−κ

2
)t′
)

(t) (2.15)

In the second line we have rewritten the inverse Fourier transformation as a con-
volution integral of the measurement pulse envelope with a Lorenzian filter of
bandwidth κ and centered at ∆+χσz. In the context of measuring the qubit state
via entanglement with the resonator field, κ also determines the rate at which
information about the qubit state leaves the cavity. Effectively, we are interested
in the steady state (s) solution which corresponds to maximal information about
the qubit state:

αs±(t) = εm(t)
(∆± χ) + iκ

2

(∆± χ)2 + (κ
2
)2

(2.16)

For zero detuning the distinguishability between ground and excited state response
is maximal and amounts to

αs+(t)− αs−(t) =
2χεm(t)

χ2 + (κ
2
)2

(2.17)

which is real valued. Moreover the steady-state angles of the pointer states with
respect to the Q axis are

θ± = Arg(−iαs±) = ± arctan

(
2χ

κ

)
. (2.18)

We see that all information about the qubit state is actually stored in the phase of
the transient photon field. Equation 2.17 tells us, that by applying an appropriate
local oscillator phase in heterodyne detection, it is possible to rotate the entire
state information into a single quadrature. However due to phase noise this will
be possible only approximately. That information is stored in a single quadrature
is a necessary condition for the application of a parametric amplifier in the phase-
sensitive mode. There, one quadrature is amplified while the other is attenuated.
As we will see in the next section, this allows in principle to avoid adding noise in
the amplification process.
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Figure 2.1: This plot shows the resonator transmission in phase (left) and ampli-
tude (right) as a function of the detuning ∆ of the measurement tone from the bare
resonator frequency ωr. Blue and red curves correspond to the qubit in the ground
and excited state, respectively. At zero detuning state information is maximal and
stored in the phase shift only.
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Figure 2.2: Here, a plot of the steady state SNR from Equation 2.19 versus qubit-
resonator detuning ∆ = ωa−ωr is shown. The calculation assumes the parameters
g/2π = 65 MHz, Ec/~ = 341 MHz and κ/2π = 6.45 MHz which are characteristic
of the setup used for this thesis. Even though SNR is much smaller for negative
detunings this position might nonetheless be favorable because of enhanced T1.

For a constant measurement tone, the signal to noise ratio for qubit state
discrimination is given by [Gambetta et al., 2008]

SNR ∝
nκχ2T1

χ2 + κ2/4
, (2.19)

where n is the average photon number in the resonator during measurement. By
fixing the ratio ncrit/n ∝ ∆2 � 1 and using Equation 2.4 for χ it is possible to
maximize the SNR as a function of the qubit-resonator detuning ∆ (see Figure
2.2. Moreover, for small detunings T1 is limited by the Purcell rate [Purcell, 1946].
Another important aspect is the speed of information acquisition Γm(t) ∝ κ|αe(t)−
αg(t)|2 [Gambetta et al., 2008]. As Govenius [2012] pointed out, the property
<(αe(t) − αg(t)) increases only quadratically in time at the measurement onset.
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Creating nonzero initial population in the resonator could reduce this to linear time
dependence. For this reason an on-hold measurement pulse has been designed
that starts with a short, strong on-pulse followed by a moderate steady state
hold-pulse. The dimensionless amplitude ratio between both is r = εon/εhold ∝√
χ2 + κ2/4/ton and of the order 10. The duration of the on-pulse is denoted

ton. Another pulse shape seems natural, namely an exponential decaying one with
time constant λ = 1/ton such that the steady state value is the hold measurement
amplitude. With θ denoting the Heaviside theta function the pulse shapes are

εon−hold(t) = θ(t− ton) + r
(
θ(t)− θ(t− ton)

)
,

εexp(t) = θ(t)
(
1 + re−t/ton

)
.

The effect of all three different pulse shapes are plotted in Figure 2.3 for the
amplitudes and Figure 2.4 for the powers or photon number equivalents. We see
that the exponential pulse leads to slightly better discrimination between ground
and excited states. Moreover Figure 2.5 suggests that it pumps slightly less photons
into the resonator than the on-hold pulse which makes it more compatible with the
criticality condition 〈n〉 � ncrit. However it is not clear how low pass filtering of
the measurement tone in the course of pulse generation and propagation influences
this effect. For this thesis step and on-hold measurement pulses were employed.
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Figure 2.3: Real parts of the solutions to the cavity Bloch equations for the three
different measurement pulses step function (left), on-hold (middle) and exponential
decaying pulse (right). The ground and excited state responses are drawn in blue
and red, respectively, the pulse shape is indicated in yellow. The parameters are
κ = 2χ, ton = 1/2κ and r = 4
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Figure 2.4: Square distances |αe−αg|2 of the solutions to the cavity Bloch equations
for the three different measurement pulses step function (blue), on-hold (red) and
exponential decaying pulse (yellow). The pulse powers which are proportional to
the cavity photon number are shown in the respective colors.
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Figure 2.5: Difference (blue) and mean integrated difference (red) between the
measurement powers of exponentially decaying and on-hold pulse: ∆n = nexp −
non−hold. Here, λ = 1/ton.
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2.3 Parametric amplification

QND measurement of a superconducting qubit via dispersive read-out is con-
strained by low measurement power [Boissonneault et al., 2009]. However, a signal
power corresponding to a single photon is not macroscopically detectable by com-
mercial amplifiers which on average add an order of magnitude more noise photons.
For high-fidelity single-shot read-out, however, it is indispensable to achieve a high
signal-to-noise ratio (SNR). Close to quantum-limited [Caves, 1982] amplification
can instead be achieved by drawing upon the qualities of parametric amplifiers.
Relying on nonlinearities, these have proven to be a valuable tool for detecting
quantum dynamics on the single-photon level such as quantum jumps [Vijay et al.,
2011].

The quantum limit on bosonic amplifiers can in principle be understood by
considering a field mode a with quadrature components X and P

X = Xϕ =
1√
2

(
ae−iϕ + a†eiϕ

)
, P = Pϕ = − i√

2

(
ae−iϕ − a†eiϕ

)
. (2.20)

We have [a, a†] = 1 or equivalently [Xϕ, Pϕ] = i ∀ϕ. The phase ϕ is kept here
because in homodyne or heterodyne detection it can be adjusted as the phase
of the LO signal. An amplification process is called phase-preserving (or phase-
insensitive) if the gain is independent of the phase ϕ, i.e. both quadratures are
amplified equally. Naively, one could write X 7→

√
GX, P 7→

√
GP where G is the

power gain. However, in order to preserve the canonical commution relations the
amplified mode b must contain a bosonic noise mode f that is uncorrelated with
a, i.e. b =

√
Ga+

√
G− 1f †. Recognizing that f is in a vacuum state leads to the

standard quantum limit that phase-preserving amplifiers add at least half a noise
photon to the input signal [Clerk et al., 2010]. Phase preserving amplification near
the quantum limit has been demonstrated experimentally by Bergeal et al. [2010].

Evading this quantum limit is possible if the amplifier is operated in the phase
sensitive mode. In that case the quadrature components are treated differently,
i.e. gain becomes a function of the quadrature phase ϕ. Ideally, this would look
like X 7→

√
GX, P 7→ P/

√
G. By amplifying one quadrature and attenuating the

other the quadrature commutation relations [X,P ] = i are automatically main-
tained and, in principle, there need not be added noise (see Figure 2.6). It is
crucial to note that X = Xϕ and P = Pϕ depend on the relative phase ϕ between
pump and signal which has to be calibrated appropriately in order to have all
information in the correct quadrature.

In practice, parametric amplifiers are realized by nonlinearly coupling the input
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mode with a strong, classical pump. A cavity exhibiting a Kerr nonlinearity [Yurke
and Buks, 2006] provides a good model for that situation:

H = ~ω0A
†A+ ~KA†A†AA

where K is the Kerr constant and ω0 the cavity resonance frequency. Then the
conditions for parametric amplification can be derived from input output relations
[Gardiner and Collett, 1985] for signal and pump coupled to the paramp:

aout − ain =
√
κA

Here, the cavity decay rate is κ and a = bsignal + bpump is the joint input/output
mode of the paramp. The nonlinear equations of motion of the intra-cavity mode
A and signal and pump input mode ain are

dA

d t
= −iω0A− iKA†AA+

√
κain + dissipation (2.21)

d ain
d t

(ω) = −iωain(ω) +
√
κA (2.22)

An alternative way to think about parametric amplification is in terms of resonant
scattering [Clerk et al., 2010] where energy from the pump mode is converted to
energy of the signal mode. Phase sensitive amplification is realized by choosing the
carrier frequencies of signal and pump to be equal. Still, in order to amplify the
right quadrature, the relative phase between pump and signal has to be adjusted.

Figure 2.6: The effect of squeezing on the quadratures of the coherent pointer
states α± as produced by phase-sensitive amplification. The initial phase space
distributions are painted blue, the squeezed, amplified distributions are shown in
red. Here, the I quadrature is amplified by

√
G and the Q quadrature by 1/

√
G.

This leads to a bigger separation |α+ − α−|2 which is necessary for projection of
the qubit onto |e〉 or |g〉.
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2.4 Summary

Circuit QED has been introduced theoretically by discussing the dynamics of a
single qubit-resonator system in the Jaynes-Cummings form. It has been shown
that in the dispersive regime, with the transition frequencies of qubit and res-
onator largely detuned, the Hamiltonian is effectively diagonal in the uncoupled
basis {|g, n〉, |e, n〉}n. The interaction of both effects a qubit state-dependent fre-
quency shift of the resonator which can be used to read-out the qubit state. For a
coherent measurement tone on the bare resonator frequency, all information about
the qubit will be contained in the phase (or single quadrature) of the transmitted
field amplitude. This allows phase sensitive amplification near the quantum limit
of added noise, a prerequisite for high-fidelity single-shot read-out. Parametric
amplification offers a possible realization for that.



Chapter 3

Feedback control of quantum
systems

3.1 Feedback in classical and quantum systems

Real physical systems often exhibit complex behaviour. In engineering, sophis-
ticated feedback control schemes are required to ensure that machines operate
properly. In classical physics, feedback, in its most general form, may be thought
of as monitoring a system and using this information to apply certain forces that
steer its dynamics into a desired direction. Thus the idea is to effect a particular
kind of dynamics from a broad range of initial conditions. This may be illustrated
in phase space. The state of a classical Hamiltonian system is fully characterized
by a tuple of its generalized position and momentum coordinates. By steering
the dynamics into the desired direction we mean that the region in phase space
occupied by the system is transferred to another. This procedure may also need
to contract phase volume because we do not admit the system to exhibt large
deviations from a well defined dynamics. However, Liouville’s theorem [Landau
and Lifshitz, 1976] tells us that the phase volume in an autonomous Hamiltonian
system is conserved. Therefore the system needs to be coupled to a controller
system that “absorbs” excess phase volume via interaction potentials.

In a quantum mechanical system the situation is a bit more delicate. Classi-
cal observables which form a Poisson Algebra over the phase space are replaced
by operators acting on a Hilbert space. Canonical commutation relations lead to
the fact that measurement used to extract state information perturbs the system
dynamics. For example the joint measurement precision of conjugate observables
is finally limited by the Heisenberg uncertainty principle. Also, the dynamics of a
continuously monitored quantum system will be strongly non-classical [Wiseman,
1994], e.g. it may exhibit quantum jumps corresponding to the observer’s knowl-

17
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edge about the system.
This leads to an alternative but equivalent conception which is to consider the state
of a physical system instead of a set of observables. Classically, a physical system is
described by a probability distribution over the outcomes of a measurement while
the quantum analog is the density operator. In the course of measurement these
quantities get updated according to the extracted information which is captured
by stochastic differential equations [Doherty et al., 2000; Wiseman and Milburn,
2009] and also known as quantum filtering theory [Bouten et al., 2007]. Optimal
control would require to solve these equations in real time which is a computation-
ally hard problem such that linearized models or discretized versions are sought.

We may further distinguish between two alternatives for feedback control of
quantum systems by choosing the control device to be of either classical or quan-
tum mechanical nature [Lloyd, 2000].
Under coherent quantum feedback we understand that quantum information pro-
cessing is used for producing the feedback [Lloyd, 2000; Nelson et al., 2000]. For
example we may choose two copies of the same system, e.g. spins, and make them
interact weakly via an additional degree of freedom, e.g. a vibrational mode [Cirac
and Zoller, 1995]. Then it is possible to exchange the states of both spins by se-
lective coherent operations on either spin. This method is effective in preserving
quantum coherence and is reversible. Since it relies on creating entanglement be-
tween system and controller other mechanisms can be envisioned that exceed the
capabilities of classical feedback.
Still it is possible to choose a classical control device. There, quantum state infor-
mation is translated into classical bits. This requires measurement of the quantum
system and is thus a stochastic process [Wiseman, 1994]. By projection onto the
eigenstates of the measured observable coherence is irreversibly lost. Subsequent
measurement outcome-dependent operations rely on the measurement being quan-
tum non-demolition (QND). For this reason, measurement in the eigenbasis of the
system Hamiltonian is required. Note that measurement in a realistic open system
is not instantaneous but requires some time. Due to finite coupling strengths to
some bath there will be relaxation and dephasing of the system and consequently
lead to errors in the measurement and the feedback.
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3.2 Theoretical description of measurement based
feedback

This section gives a simple treatment of the quantum mechanics of measure-
ment closely following reference [Wiseman and Milburn, 2009]. Consider the joint
Hilbert space of the system S and an apparatus A, H = HS ⊗HA. The apparatus
serves as a meter or read-out device for the system. Before measurement, the
system is in the initial state ρ = ρS⊗ρA. There is no initial correlation between S
and A. Moreover, the state of the apparatus is known to the observer. Now, time
evolution of the joint system under the unitary operation Û creates entanglement
between S and A due to an interaction term in the Hamiltonian. Evolution for a
delay τ leads to

ρ(t+ τ) = Û(τ)ρ(t)Û †(τ) = Û(τ) (ρS(t)⊗ ρA(t)) Û †(τ). (3.1)

Then, a projective measurement of A with projection operators π̂A(λ) = |λ〉A〈λ|
is performed. The unnormalized post-measurement state for result λ is

π̂A(λ) ρ(t+ τ) π̂†A(λ) = M̂λ(τ) ρ(t) M̂ †
λ(τ) (3.2)

with measurement operators defined as

M̂λ(τ) = (IS ⊗ π̂A(λ))Û(τ). (3.3)

We obtain the conditional state for a measurement result λ from

ρλ(t+ τ) =
M̂λρ(t)M̂ †

λ

Tr
(
M̂λρ(t)M̂ †

λ

) =
Oλρ(t)

Tr
(
ρ(t)Êλ

) =
Oλρ(t)

℘(λ)
. (3.4)

with Oλρ = M̂λρM̂
†
λ and probability operators Êλ = M̂ †

λM̂λ. The probability for
the outcome λ is ℘(λ) = Tr

(
ρÊλ

)
. The operations Oλ describe a general measure-

ment on S by coupling to an apparatus A. They are linear, completely positive
maps from the state space of H onto itself. Conservation of probability demands
that

1 =
∑
λ

℘(λ) =
∑
λ

Tr(Oλρ) = Tr

(
ρ
∑
λ

Êλ

)
(3.5)

Since Tr ρ = 1 it follows that
∑

λ Êλ = I. If the apparatus is initially in a pure
state |α〉, then the measurement operators for the system alone are

M̂λ = A〈λ|Û(τ)|α〉A. (3.6)

This formalism stands in close analogy to Bayesian inference. There, in a clas-
sial setting, measurement is understood as an information update to the observer.



CHAPTER 3. FEEDBACK CONTROL OF QUANTUM SYSTEMS 20

After the observation of an event λ at time t + τ , the posterior probability ℘λ of
an event x is given by

℘λ(x; t+ τ) =
℘(λ|x)℘(x; t)

℘(λ)
=

℘(λ|x)℘(x; t)∑
y ℘(λ|y)℘(y; t)

. (3.7)

This is motivated from Bayes’ rule. Being aware that a transformation of the
probability distribution has taken place, we can write Equation 3.7 as

℘λ(t+ τ) =
Oλ℘(t)

℘(λ)
, (3.8)

with the coefficients of Oλ being Oλ(x) = Eλ(x) = ℘(λ|x). Clearly, the quantum
case provides a generalization to this, with the probability vector ℘ replaced by
the density operator ρ and the measurement updating (or conditioning) described
by a positive operator valued measure (POVM). The last property is what allows
the system to be perturbed by measurement. The conditional, posterior state does
not allow full reconstruction of the prior state, before measurement.

The importance of this description for discrete, measurement-based feedback
of a superconducting qubit by dispersive read-out is as follows. We recognize that
in this case the measurement apparatus A is the resonator field. If the resonator
mode is in a coherent state |α〉, resonant with the bare resonator frequency ωr of
the resonator, the propagator Û as appearing in Equation 3.1 is (in the interaction
frame)

Û(τ) = exp(−iχτσza†a).

This is the phase shift operator for coherent states with phase χτσz. Cavity
decay, omitted here, simply has the effect of stabilizing the phase shift to a steady
state value of ' π/4 (see Section 2.2), equivalent to a finite period of interaction.
The qubit gets entangled with coherent pointer states [Walls and Milburn, 2008;
Gambetta et al., 2008] |αg/e〉 of the transient field, i.e.

Û(|α〉〈α| ⊗ ρ)Û †=ρee|αe〉〈αe| ⊗ |e〉〈e| + ρeg|αe〉〈αg| ⊗ |e〉〈g| +
ρge|αg〉〈αe| ⊗ |g〉〈e| + ρgg|αg〉〈αg| ⊗ |e〉〈e|. (3.9)

Measurement of the field is related to projection onto coherent states [Eichler et al.,
2012a] which form an overcomplete set of Fock space. They are not orthogonal
[Walls and Milburn, 2008], i.e.

|〈β|α〉|2 = e−|α−β|
2

,

thus large displacements and phase shifts are necessary to best discriminate be-
tween both pointer states and achieve maximal projection of the qubit. Ideally,
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the conditional states of the qubit are just its eigenstates and the measurement is
QND. However, it is also clear that non-orthogonality of the pointer states causes
residual uncertainty in determining the qubit state which is inherent and not due
to measurement imprecision or noise.

Going back to the more abstract formalism, the link between measurement and
feedback is a (classical) decision rule which for each measured data-set computes
the appropriate feedback operation. Mathematically, it is an injective mapping
between the set of measurement results and possible operations, λ 7→ Uλ, with
potentially as many different operations as there are possible outcomes. Thus
the entire feedback process including measurement has the following effect on the
initial density matrix ρ:

ρ 7→ Gρ =
∑
λ

UλMλρM
†
λU
†
λ =

∑
λ

WλρW
†
λ. (3.10)

Here the feedback operation is denoted G and Wλ = UλMλ with measurement
operators Mλ and unitary operations Uλ.

classical

Figure 3.1: General scheme of a measurement based feedback system with mea-
surement (green), classical information processing (blue) and conditioned feedback
operation (red).

This structure, measurement followed by unitary operation, has been found to
be a general property of quantum operations [Doherty et al., 2001]: From Kraus’
representation theorem [Kraus, 1971] we know that the action of any quantum
operation O (linear, completely positive and trace preserving) can be written as
an expansion with bounded operators Ak:

Oρ =
∑
k

AkρA
†
k (3.11)

By polar decomposition, any operator can be written as the product of a unitary
and a positive operator, thus Ak = ŨkM̃k, which is analogous to the feedback
operation. Doherty et al. [2001] see this as a proof that any quantum operation is
achievable by means of feedback control.
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3.3 Optimal filtering for qubit state estimation

In this section a brief description of filter methods for qubit state inference from
a resonator transmission measurement is presented. Given a measurement record
ψ = ψ(t), the task is to apply a filter functional F , linear or nonlinear, which
allows for best possible discrimination between the qubit states, i.e.

ψ 7→ F [ψ] 7→ σψ. (3.12)

The last mapping in Equation 3.12 represents a decision rule that leads to a state
estimate σψ, e.g. 0 or 1 for ground and excited state in the case of a two-level atom.
In the simplest case it can be realized by means of a threshold θ saying that for
all results with F [ψ] ≥ θ (< θ) we opt for state 1 (0) depending on the nature of
the physical process. In dispersive read-out, we can identify positive and negative
answers in the right quadrature with excited and ground states, respectively, as
pointed out in Section 2.2.

3.3.1 Linear filters

A linear filter functional can be represented as a convolution integral with filter
kernel f over a period of length T :

F [ψ](t) = (f ∗ ψ)(t) =

∫ t

t−T
f(t− t′)ψ(t′) d t′ (3.13)

The kernel is required to be normalized, i.e.
∫ t
t−T f(t−t′) d t′ = 1 . Since integration

extends over a compact interval we speak of a finite impulse response (FIR) filter.
Moreover, in practice, signal processing is performed with a digitized signal on a
field programmable gate array (FPGA) such that the convolution becomes

Fdigital[ψ]k =
k∑

l=k−m+1

fk−l ψ(tl) (3.14)

for a filter of length m ≥ 1 (called m-tap filter) and discretely sampled time
points tl with separation determined by the analog-to-digital-conversion band-
width. Gambetta et al. [2007] discussed optimal protocols for state estimation
in single-shot read-out including linear and nonlinear filters. They used not the
direct measurement record ψ but the integrated record up to the current observa-
tion time s(t) =

∫ t
0
ψ(t′) d t′. This leads to an improved signal-to-noise ratio for

uncorrelated noise, because the ideal steady-state response for dispersive read-out
has the form of a step function.
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Possible linear filters include the box-car filter, where fl = 1/m ∀l or an expo-
nential decaying filter reflecting the ensemble averaged (but not the single-shot)
dynamics of qubit decay. It is understood that the form of the filter kernel f defines
the type of information extracted from the measurement record which should be
congruent with qubit state information. However this invokes a subtle distinction
between read-out concerned with the initial qubit state and read-out that aims at
extracting the current state. The latter is the relevant task in feedback. To some
degree, this difference is contained in how older records are weighted relative to
newer ones. For short integration times (much shorter than the relaxation time),
however, the difference becomes unimportant. With knowledge of the average
single-shot trace, it is possible to find an optimal filter kernel, which is specific to
current measurement conditions. This has been conducted numerically by Gove-
nius [2012], based on single-shot measurements done on the same sample as in
the present work. The result was that the best estimate, conditioned on initial
preparation, is obtained from filter coefficients that exhibit a three-point pattern
of the form {f1, f2, f3} ≈ {1,−1, 1}. In particular the measurement fidelity does
not improve significantly for filter lengths greater or equal three. Consequently,
in order to minimize computational time in a real-time feedback application, a
three-tap filter appears optimal. Furthermore it can be realized easily in digital
signal processing since only multiplications by ±1 are involved which are compu-
tationally cheap.

3.3.2 Bayesian filter

Next we consider nonlinear filtering. By definition Bayesian updating is the op-
timal procedure to infer a probability distribution from continuous monitoring
Wiseman et al. [2002]; Gambetta et al. [2007]. The probability to observe the
state ρ ∈ {g, e} given the record ψ is

℘(ρ|ψ) =
℘(ψ|ρ)℘(ρ)∑
ρ′ ℘(ψ|ρ′)℘(ρ′)

. (3.15)

The left hand side is interpreted as a posterior probability, after the observation,
while the right hand side probabilities are valid prior to the observation. On
the basis of the expected evolution of an observed qubit state ρt′ at time t′, we
can compute the conditional probabilities ℘(ψ(t)|ρt′) to observe the quadrature
amplitude ψ(t) at a later time t ≥ t′. By expected evolution it is meant that the
field dynamics in the interval [t′, t] obeys the stochastic cavity Bloch equations
(2.12) with σz(t′) determined by ρt′ . With analytical solutions termed φρt′ (t), the
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Figure 3.2: Illustration of the probability distributions involved in Bayesian filter-
ing of a dispersive measurement record. Left: The density ℘[ψ|ρ] for ρ = g, e with
a Gaussian noise distribution assumed. These are just the probability distributions
for the pointer states. Middle: The posterior probabilities ℘[ρ|ψ] according to
Equation 3.15 and with ℘[e] = ℘[g]. Right: Dependence of the posterior proba-
bilitiy ℘[e|ψ] on the prior ℘[e]. We see that the discrimination threshold at zero
gets nonlinearly biased towards the state which is more likely to have been present
initially. This parameter is what varies in dynamic updating.

expression for the conditional probability is

℘(ψ(t)|ρt′) =

∫
K

(
ψ(t)− φρt′ (t)

∆2

)
dφρt′ (t). (3.16)

Here, a kernel function K describes the noisy signal centered around φρ with the
parameter ∆2 being a measure of the signal fluctuations. Integration extends over
all states φρt′ (t) that the measurement apparatus can reach in time t− t′ starting
from φρ. For example, φρ may be the solution to the stochastic cavity Bloch
equation (2.15). With exponentially distributed decay time τd we have

℘(ψ(t)|et′) =

∫ t

t′
K

(
ψ(t)− φτd(t)

∆2

)
e−τd/T1

T1

d τd +K

(
ψ(t)− φe(t)

∆2

)
e−t/T1

T1

,

℘(ψ(t)|gt′) = K

(
ψ(t)− φg(t)

∆2

)
.

For example, the kernel function can be approximated by a Gaussian distribution
which would be expected from coherent states. See Figure 3.2 for an illustration of
the Bayesian probability distributions. It is worth noting that linear and nonlinear
filters can of course be combined by modifying Equation 3.16 such that the input
to K is not ψ−φρ but f ∗(ψ−φρ) for an appropriate choice of f , i.e. the nonlinear
filter is applied after the linear filter: F = Fnl ◦ Flin.

Alternatively, previous experimental data can be used to retrieve the probabil-
ity distribution. This solution might be superior to the previous case, since it is
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specifically tailored to the measurement dynamics after the signal photons leave
the resonator. In the present case the most prominent contribution to nonlineari-
ties is the paramp.
Here again, as mentioned before, it is not sufficient to measure the resonator output
for an ensemble of prepared excited and ground states which yield the probabil-
ity distributions ℘(ψ(t)|g0) and ℘(ψ(t)|e0). gt′/et′ indicate ground/excited states
prepared at time t = t′. The problem is that we really need the distributions
℘(ψ(t)|gt) and ℘(ψ(t)|et) to reliably determine the qubit state at the present time
and not that of the past. This problem can be overcome only approximately, as
measurement always lags behind preparation, by conditioning not on the prepa-
ration but on the immediate past, i.e. ℘(ψ(t)|et−δt) with δt � t. Still, some
decision rule needs to be employed to determine whether ψ(t − δt) belongs to g
or e. To set up the prior probability for Bayesian updating at this point, it might
be necessary to resort to some form of linear filtering with a simple threshold de-
cision rule. Later on, after a first posterior probability distribution has been set
up, Bayesian updating works recursively. The key to implementing a Bayesian
filter on an FPGA is to use the obtained (approximate) probability distribution
℘(ψ(t)|ρt−δt) as a look-up table to make an estimate for the current state ρ(t). A
decision rule could be obtained from evaluating

ψ 7→ sgn(℘(e|ψ)− ℘(g|ψ)) = sgn

(
℘(ψ|e)− ℘(ψ|g)

℘(ψ|e) + ℘(ψ|g)

)
. (3.17)

The Bayesian updating procedure is to calculate the posterior probabilities
℘t+δt[ρ|ψ] at time t + δt from the prior probabilities ℘t[ρ|ψ] at time t, the mea-
surement record ℘t[ψ] and the time correlations ℘[ψ(t+ δt) = ψ′′ ∧ ψ(t) = ψ′]. In
the first step, we write

℘t+δt[ρ|ψ′′] =
℘[ψ(t+ δt) = ψ′′|ρt] ℘t[ρ]

℘t[ψ′′]
. (3.18)

The single terms in this equation can be expressed by the given properties via

℘t[ρ] =
∑
ψ′

℘t[ρ|ψ′] ℘t[ψ′],

and

℘[ψ(t+ δt) = ψ′′|ρt] ≡
∑
ψ′

℘[ψ(t+ δt) = ψ′′|ψ(t) = ψ′] ℘t[ψ
′|ρ]

=
∑
ψ′

℘[ψ(t+ δt) = ψ′′ ∧ ψ(t) = ψ′]
℘t[ρ|ψ′]
℘t[ρ]

.

The final result is

℘t+δt[ρ|ψ′′] =

∑
ψ′ ℘[ψ(t+ δt) = ψ′′ ∧ ψ(t) = ψ′] ℘t[ρ|ψ′]

℘t[ψ′′]
. (3.19)
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To clarify notation, we distinguish between trajectories of single measurement
records ψ : t 7→ ψ(t) and the values they may assume, denoted ψ′′, ψ′. The prob-
ability ℘[ψ(t+ δt) = ψ′′ ∧ ψ(t) = ψ′] describes the correlation that one measures
ψ′ at time t and ψ′′ at time t + δt. In the case of ℘[ψ(t + δt) = ψ′′|ρt] we think
of the distribution of measurement records at time t + δt that is preceded by the
state estimate ρ at time t.

From this theoretical excursion we draw an important conclusion regarding the
implementation of a Bayesian filter on an FPGA. The key element is to acquire
correlated histogram data of the output field after uniformly preparing the qubit
in |g〉 or |e〉. Equivalently, this measurement directly yields the probability distri-
butions ℘tψ and ℘[ψ(t+ δt) = ψ′′ ∧ ψ(t) = ψ′]. In order to initialize the recursion
of the state estimates ℘t[ρ|ψ] one needs to resort to a threshold based method,
calculate it beforehand from theory or take previously recorded data. Since the
computations are rather complicated and require knowledge of the entire record,
updating will need to be performed after the measurement on another computer.
The next problem is limited memory which keeps the number of correlated time
points low. All the same it is possible to feed the obtained probability distribu-
tion ℘[ρ|ψ] from one measurement as input to the next such that two correlated
histograms per measurement suffice. A more complicated task is to keep the sys-
tem stable. That is all relative phases of the microwave generators need to be
controlled as well as displacement and cancellation of the paramp pump and the
qubit transition frequency. In turn the nonlinear filter is specifically tailored to the
system dynamics. Realized as a simple look-up table, the Bayesian filter avoids
multiplication that is expensive in terms of computational time and hardware. All
linear filters rely on multiplication.

3.4 Summary

In this section, the notion of discrete feedback control of a quantum system was
introduced. The description involves three steps: quantum measurement, clas-
sical information processing and coherent feedback operation conditioned on the
measurement outcome. Quantum measurement is most generally described by a
positive operator valued measure (POVM) which can be understood in terms of
interaction of the system with a measurement apparatus and projection of the lat-
ter. In dispersive read-out this corresponds to indirect measurement of the qubit
via detection of coherent pointer states of the transient cavity field.
Estimating the qubit state is thus achieved via linear or nonlinear filtering of the
resonator output. Bayesian filtering establishes a probability distribution that is
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continuously updated during the measurement record. It has been proposed (but
not yet realized) that the kernel for Bayesian updating can be implemented as a
look up table on an FPGA. Measuring signal correlations in single-shot read-out
serves as calibration.



Chapter 4

Experimental realization of feedback

4.1 General outline of the experiment

After a general discussion of quantum feedback control in the previous section, at
this point a concrete feedback application for control of a superconducting qubit
is presented. Projective measurement of the qubit by strong, dispersive read-out
is taken as the basis for conditioned coherent operation applied to the qubit. High
fidelity single-shot read-out is realized by employing a paramp. In the experiments
presented in this thesis the conditional operations are microwave Rabi pulses to
the qubit with flip angles 0 and π: Depending on the measurement result, we are
able to flip the qubit state or leave it as it was. It is important to note, how-
ever, that due to projection onto the measurement basis, information about the
true initial state is lost. Therefore the feedback operation, neglecting qubit decay,
corresponds to an essentially classical binary operation. More generally, it can be
understood as an initialization procedure to prepare the qubit in either excited or
ground state from an arbitrary, initially unknown state. For the same purpose that
experiment has recently been conducted by Risté et al. [2012a] with a transmon
qubit in a 3D cavity exhibiting relaxation times of up to 50 µs, almost 2 orders of
magnitude more than what is typically achieved with the setup used for this thesis.

One motivation for this simple approach is to avoid being limited by qubit
decoherence which, on the present setup, was much faster than relaxation (by a
factor of 5). In fact, finite qubit relaxation and decoherence impose severe con-
straints on the feasibility of measurement-based feedback. There will always be
a non-negligible delay between measurement and conditional operation. During
that period initially extracted information is liable to get obsolete such that the
feedback operation finally produces the opposite of what was intended. In the case
of bit-flip, decay is in some sense the inverse operation of a π pulse from the ground
to the excited state. If the qubit decays after having been identified as excited, a

28
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π pulse will re-excite it even though it was meant to take it to the ground state.

Highly adaptive signal processing and feedback triggering have been achieved
with the help of field programmable gate array (FPGA) electronics. Moreover,
pulse generation which is usually performed by arbitrary wave form generators
(AWG) of the type Tektronix 5014 had to be revised for the feedback pulse. The
reason was an inacceptably long trigger delay, i.e. the time between receiving a
trigger and the output of a pulse. For the previous model the delay amounts to
∼ 500 ns which could be drastically reduced to ∼ 40 ns by resorting to the model
Tektronix 520. As a further option, pulse generation on the FPGA itself was in-
vestigated.
A schematic overview of the feedback loop setup is depicted in Figure 4.1. The
qubit is prepared in an arbitrary state by a pulse from the AWG Tektronix 5014.
That AWG also produces the measurement pulses (green) that go through the
resonator and are amplified by a Josephson parametric amplifier (JPA) and a
high electron mobility transistor (HEMT). Having left the dilution refrigerator
the transmitted signal passes a heterodyne down-conversion mixer and enters the
FPGA (blue). There, digital signal processing electronics evaluate the feedback
condition at a pre-defined delay after the start of the measurement (measure trig-
ger). If the answer is positive, a trigger (red) is sent to the AWG Tektronix 520
which is programmed to launch a π pulse resonant with the qubit g ↔ e transi-
tion. Subsequently, another measurement (green) reads out the new qubit state.
A more detailed drawing is depicted in Figure 4.3 and the feedback loop inside the
FPGA is explained later in Figure 4.4.

FPGA
feedback trigger

5014520

measure trigger

HEMT
JPA

I Q
LO

RF
I Q

LO

RF

LO Q
I

RF

dilution refrigerator

classical 0 or 1

Figure 4.1: Setup (left) of the feedback experiment with the different stages high-
lighted in colours such that they can be identified with the abstract feedback loop
(right). The stages are state preparation (green), signal processing and feedback
logic (blue) and feedback operation (red).
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Figure 4.2 shows the corresponding pulse sequence. Preparation and read-out
pulses are operated by an AWG Tektronix 5014, the feedback π pulse is launched
from an AWG Tektronix 520. For qubit control, Gaussian pulse envelopes with
full width at half maximum (FWHM) ∼ 15 ns were employed. All pulses are up-
converted to the respective transition frequencies by mixing with continuous wave
microwave tones. The measurement pulse envelopes are of the type on-hold. After
the observed onset of the resonator output the program waits for a preset delay Fb
time until optimal read-out fidelity is reached and calculates the feedback opera-
tion. In current experiments this measurement delay amounted to 150 ns. It then
takes 250 ns to launch the feedback pulse which gives 400 ns total accumulated
delay after the preparation. A second measurement after the feedback pulse reads
out the new qubit state.
By means of two FPGA applications we are able to extract two types of informa-
tion about the feedback and measurement dynamics. Time resolved IQ histogram
data cover 160 ns from first and second measurement record (blue regions). More-
over it is also possible to correlate the pre- and post-feedback quadrature data at
a certain delay after the measurement onset (called Fb time). The instances when
correlation is active is marked by red vertical lines.

AWG 1
(Tek 5014)

AWG 2
(Tek 520) time

M2M1

feedback

preparation

?
Fb time

160 ns 160 ns

≈ 250 ns

time

time

Fb time

Figure 4.2: Pulse sequence used for the feedback experiment. Preparation (top)
and read-out (middle) are performed by an AWG Tektronix 5014, the feedback π
pulse (bottom) is launched from an AWG Tektronix 520. Blue regions indicate the
time intervals covered in the time-resolved histogram mode of the feedback FPGA
application. The read-out values used for the correlation type measurement are
marked by red lines.
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After this introduction, it is worth pointing out possible applications. Per-
forming qubit operations conditioned on some measurement result plays a key role
in quantum teleportation [Bennett et al., 1993]. There, to obtain the teleported
state it is necessary to perform a qubit rotation that depends upon the result
of a joint read-out of another qubit pair in the Bell basis. Instead of two there
are four possible measurement results that need to be distinguished and corre-
spondingly four different operations need to be triggered selectively. Up to the
point where feedback sets in, teleportation has been successfully demonstrated in
a circuit QED setup by Baur et al. [2012]. The work presented in this thesis is
supposed to contribute to the implementation of a full teleportation protocol in
the near future.
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4.2 Experimental setup

In this chapter the experimental setup for the realization the previously intro-
duced feedback protocol is characterized. Each feedback experiment is necessarily
preceded by a series of characterization and calibration measurements which are
summarized in Section A of the appendix.

Operational system parameters are noted in Table 4.2.1. All given quantities
except the critical photon number ncrit = ∆2/4g2 are determined from experiment.
The theoretically expected dispersive shift χ (Equation 2.4) is given in brackets
behind the experimental value. By means of magnetic flux the transmon g ↔ e

transition was tuned below the resonator frequency to enhance the relaxation time
T1 to ' 970 µs. The reasoning was that for this experiment, minimal relaxation is
the decisive quantitiy for successful feedback. Still, other parameters such as the
dispersive shift χ and the signal-to-noise ratio (SNR) are crucial for state identifi-
cation. A maximization of the SNR as a function of critical measurement power
and detuning from Equation 2.19 favored positive detunings of ∼ 800 MHz. How-
ever, the observed T1 at this spot was only ' 550 ns (compare the discussion of
the SNR together with Figure 2.2).

Now, the experimental setup shown in Figure 4.3 is summarized briefly. The
system consisting of a transmon qubit capacitively coupled to a coplanar waveg-
uide resonator on-chip is placed inside a dilution refrigerator cooled down to a base
temperature of 55 mK1. Pulses for coherent control and read out are generated

1Ideally 20 mK should be reached which is however a technical issue that has not been
investigated further.

parameter value
ωge 6.3981 GHz
T1 970 ns
T2 260 ns
g/2π 67 MHz
EC/~ 344 MHz
ωr,g 7.1334 GHz
κ/2π 6.4505 MHz
χ/2π -1.7 (-1.9) MHz
ncrit 31

Table 4.2.1: Overview of the most important parameters of the qubit-resonator
system.
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by AWGs Tektronix 5014 and 520 and get shifted to frequency bands centered at
the corresponding transition frequencies by mixing with local oscillator microwave
tones. These are provided by microwave generators Agilent 8648A.
The mixers, of type Marki 4509IQ. are all operated at the left side-band at an
intermediate frequency (IF) of 100 MHz, meaning that pulse envelopes are modu-
lated with a 100 MHz oscillation. This way any direct current (dc) signal leakage
through the mixer is detuned from the actual resonance frequency by 100 MHz
and unwanted excitation is avoided. Mixer calibration encompasses dc offset cal-
ibration, performed for both AWGs, and sideband calibration which is performed
only for the Tektronix 5014. The latter optimizes the phase and amplitude of the
IF modulation such that the sideband chosen for operation has maximal amplitude
and the others are minimal. Since the AWG Tektronix 520 is not configured for
generating appropriate pattern sequence files for sideband calibration that proce-
dure was omitted. Since no interference at the other sideband was to be expected
this did not pose a problem for our work. Due to lack of voltage output/input
ports, dc offset calibration for the Tektronix 520 has been established externally
via bias-tees ZFBT - 4R2GW. Mixer sideband calibration for the Tektronix 520
has not been solved within this work.
Measurement of the resonator output field is accomplished by heterodyne down
coversion with an LO microwave tone detuned by 25 MHz from the resonator
transition frequency. An IF of 25 MHz has been chosen for reasons of frequency
matching with the FPGA analog to digital conversion (ADC) bandwidth of 100
MHz. Down conversion is succeeded by an analog low pass filter before the signal
enters the FPGA.
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Figure 4.3: Detailed view of the experimental setup including the inside of the
dilution refrigerator, as an extension to Figure 4.1.
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4.3 FPGA programming

4.3.1 General facts and digital signal processing

Signal processing in science faces huge challenges posed by large amounts of data,
varying information content and high bandwidth measurements. In feedback type
experiments, high bandwidth data processing is vital to ensure real-time communi-
cation with the system. Field programmable gate arrays (FPGA) account for that
flexibility. They are digital integrated circuits which allow for parallel computing
and can get re-programmed easily such that different applications are executable
from the same hardware.

Parallel computing is achieved by a pipelined operational structure: In contrast
to standard CPUs processing units on the FPGA can take new inputs even if
processing of previous inputs has not yet finished. As in a pipeline, data flow is
continuous with time synchronization provided by an external clock.
Moreover, the FPGA can be reprogrammed rapidly in order to switch between
different tasks. The elementary building blocks are look-up tables (LUT) that
represent arbitrary logical/binary operations and programmable switch matrices
(PSM) which interconnect the LUTs. In order to change the functionality of the
FPGA signal paths can be re-routed by means of the PSMs and LUTs can be
assigned different truth tables. In addition to the LUTs there exist specialized
building blocks, e.g. FIR filters for signal processing, and a block random access
memory (RAM).
FPGA programs are written in the “Very High Speed Integrated Circuit Hardware
Description Language” (VHDL). In practice, the applications are generated by
means of the software Simulink by MathWorks Inc. and are subsequently
compiled into VHDL with the package ISE Design Suite provided by Xilinx
Inc. The graphical representation of the block wiring in Simulink allows FPGA
programming even without explicit knowledge of VHDL.

The FPGA used for this work was a Virtex 4 by Xilinx Inc. [Xilinx Inc., 2008]
contained in the Nallatech DSP Xtreme Development Kit IV [Nallatech Limited,
2005]. Digital to analog conversion (DAC) of incoming signal is achieved at a sam-
pling frequency of 100 MHz with 14 bit resolution. There are two input channels
that handle a maximal range of ±1.1 V each. Included in the DAC are anti-alias
and low-pass filters as well as a dc block. Triggers enter and leave via four so-called
user_pins that are mapped to boolean signals by means of a threshold. Moreover,
digital to analog (DAC) output can be produced. For feedback applicability it is
relevant to know the delays between signal input and trigger/pulse output with-
out processing in between. These have been measured to be 70 ns for ADC to
user_pin and 250 ns for ADC to DAC. The latter is significantly higher due to
filters and buffers needed to convert from analog to digital and back. These delays
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are certainly not optimal as they are a non-negligible on the time scale of qubit
relaxation and decoherence. In addition there are delays due to signal propaga-
tion, analog filtering and triggering the feedback pulse. The technical realization
of an ideal feedback apparatus, favorably in analog manner, that accomplishes
both measurement and feedback operation would be an objective for future work.
In this thesis, however, the primary interest was to show feasibility and gain some
experience with the experimental setup.

In digital signal processing as performed on the FPGA, data is represented
in binary format. In general, the binary representation is realized by processing
each signal bit on another channel. Associating several channels allows to construct
arbitrary rational numbers in a given range (There are only finitely many channels).
We distinguish between two data types: boolean and fixed point. Boolean signifies
truth values where 0 and 1 are identified with “False” and “True”, respectively,
which requires only one channel. The binary representation of an integer,

(bn−1, . . . , b0)2 ≡
n−1∑
k=0

bk2
k (4.1)

is constructed from concatenating n channels each carrying the signal bk. bn−1

is called the most significant bit (MSB) and b0 the least significant bit (LSB).
It is now possible to introduce a sign-bit and a binary point that allows to define
negative numbers and fractions. The sign-bit is the MSB of the string and indicates
positivity (negativity) if it is 0 (1). A binary point of 0 ≤ m ≤ n merely indicates
that the representation of Equation 4.1 is multiplied by 2−m. Signed fixed points
are denoted FIX_n_m where n is the bit width (length of the string) including
sign-bit and m is the position of the binary point; unsigned fixed points are called
UFIX_n_m.

There are various operations that manipulate binary strings. We can take
away a certain bit range of the string, e.g. bit[k:l][(bn−1, . . . , b0)2] := (bk, . . . , bl)2,
or reinterpret it in another format, e.g. unsigned instead of signed or with binary
point set to 0, or cast it to another format, e.g. increase or decrease the string
length. Moreover there are elementary arithmetic manipulations such as addition
and multiplication.

All these operations need to be implemented in hardware by connecting signal
paths in a specific manner. In order to ensure stable signal processing, certain
operations may need to get clocked if path delays get too long. This is achieved
by including delays into the path that suspend the signal until the next external
clock signal. Moreover computationally complex blocks, such as multiplication
have built-in delays. One of the objectives in realizing the feedback loop was
minimizing these delays such that measurement information remains valid.

For boolean manipulations there are logical blocks such as and (∧), or (∨ ), inv
(¬), etc. More sophisticated elements are multiplexers, addressable shift registers
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and registers. Registers can store binary data by providing an input, enable and
reset port. Multiplexers allow to choose from a tuple of inputs by taking as further
argument the index of the input selected for transmission. Addressable shift regis-
ters are a sort of combination of registers and a multiplexer. Incoming data shifts
“through” the registers by one position each clock cycle. Via an address input port
the register is determined that creates the output. Feeding a constant value to
the address input port simply leads to a delay of variable length. Further useful
blocks include counters and accumulators which perform the tasks they are called
after.

4.3.2 Implementation of the feedback loop

At this point the FPGA firmware that controls the feedback loop is discussed. A
block diagram description is shown in Figure 4.4. There, the path belonging to the
feedback loop is highlighted in green, the blocks belonging to the DDC are yellow,
the feedback evaluation logic is painted blue and the data acquisition is depicted
in red. At the input port to the left we have the user_pins for triggers and the
analog-to-digital conversion (ADC) port for the signal. The signal is first mixed
with a LO at 25 MHz for heterodyne detection of both quadratures. Next comes
a FIR filter including scaling and subtraction of a constant value. Data address
tuples for histogram binning on a RAM are formed in the box labelled address.
The feedback trigger is formed by evaluating the feedback condition I(tfb) ≥ (<)θ

with the parameters Fb time tfb, Fb threshold θ and Fb polarity ≥ (<) read from
a register. Note that the threshold is actually subtracted beforehand but kept
here for better understanding. The triggers A/B are used to adjust the correct
feedback delay with an addressable shift register (ASR). By inverting the boolean
function 2ndMeasurement we assure that the feedback trigger is given only during
the first measurement. All triggers and logic outputs (blue) are boolean variables.
INV stands for invert and exchanges the booleans 0 (false) and 1 (true). The
feedback trigger leaves the FPGA via user_pin 3 towards the AWG Tektronix 520.
Optionally pulse generation may take place in the FPGA already such that a pulse
is output on the output channels of the digital-to-analog conversion (DAC) port.

Before entering the FPGA, the signal passes first an analog down-conversion
with LO frequency detuned from the measurement frequency by an IF of 25 MHz.
This matches the sampling rate of the FPGA, 100 MHz, in that precisely four
processing steps can be performed within a period of the IF oscillation. A sub-
sequent band-pass filter protects the FPGA from dc and counteracts aliasing due
to digital sampling. After the analog-to-digital conversion (ADC) of the FPGA
the first signal processing unit is the digital-down-conversion (DDC) block. There,
heterodyne detection of the incoming signal is performed. To this end the signal
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Figure 4.4: Diagrammatic description of the FPGA feedback application. The
signal-to-feedback path is highlighted in green, the DDC blocks are yellow, the
feedback evaluation logic is shown blue and the data acquisition is depicted in red

is split up and multiplied by a sine or cosine with the IF frequency 25 MHz, re-
spectively, to form I and Q quadratures. This is easily and rapidly achieved by
multiplication with the periodic sequence {1, 0,−1, 0}, each such block covering
40 ns which explains the choice of a 25 MHz IF. Another phase-adjustable mixing
option is available, too, but would consume too much time in the feedback loop
due to multiplication.

Since mixing creates both difference and sum frequencies a finite-impulse-
response (FIR) filter follows the DDC which necessarily has to have nodes at
25 and 50 MHz. As in the feedback loop our main concern is speed, the simplest
way of doing this is a four-tap, i.e. 40 ns, square window filter which has the typ-
ical sinc form in the frequency domain. On the FPGA that filter is implemented
by means of an addressable shift register which variably delays the incoming sig-
nal point and subtracts it from a free running accumulation of all previous signal
points. Hence, only the values within the time window are kept and the signal
processing in real-time is achieved. An alternative to this fast yet crude method
is a 40-tap FIR filter with programmable filter coefficients. Again, multiplication
of binary data and the sheer filter length are too time consuming to be applicable
for feedback within the bounds given by the qubit relaxation time. The extra
delay is of the order of 1 µs. In fact filter length is a problem only if the latest
signal entry (carrying new information) is given less significance, by the value of
its filter coefficient, than is given to older entries. As already discussed, filters
used in real-time processing for feedback need to be sensitive to the information
content and should not include avoidable delay. Different options built-in in series
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include a three-tap version of the curvature-sensitive filter and signal integration.
The total delay amounts to 10 ns at minimum for the slender version, each of the
last options takes one more delay of 10 ns.

Before the down-converted and filtered data is processed further, a pre-processing
unit allows to subtract offsets and subsequently scale the data. The aim of this
unit is to efficiently use all memory available for data storage. In the histogrammer
application the entire IQ phase space record is stored with a resolution between
five and seven bits, depending on the type of application. In the course of digital
signal processing data resolution is reduced stepwise from the initial 14 bit output
of the ADC. If the data range is too low chopping away too many digits behind the
binary point will irreversibly lead to a bad resolution. The combination of subtrac-
tion and scaling thus allows to retain the best possible resolution. Furthermore
it is important to note that the value subtracted from the I quadrature already
defines the threshold to distinguish between ground and excited state traces in
dispersive measurement.

At this point the paths leading to “feedback loop” and “signal maths” split
up. In signal maths the quadrature representation (I,Q) can be converted to
amplitude-phase (A,ϕ) representation. In the FPGA two signal channels enter-
ing the ADC are processed in parallel. In the signal maths block they can be
multiplied to calculate correlation functions. The problem of limited resolution
also renders (A,ϕ) histograms invaluable to retrieve accurate phase information,
e.g. for calibration, because cartesian and polar representation are linked via a
nonlinear transformation.

Evaluating the feedback condition requires three questions to be answered
which are encoded in the parameters Fb time, Fb polarity and SubI1/2 (see Ta-
ble 4.3.1). Fb time defines the read-out time tfb in the first measurement at which
the feedback condition is evaluated. It is the delay after the first recorded data
point in the first measurement. In total 16 data points are recorded in each of
the two measurements (one after preparation, one after feedback). The threshold
θ defined to distinguish ground state response from excited state response can
be adjusted via subtraction, i.e. it is contained in the parameter SubI. At the
same time all histograms get centered around the threshold. Finally, we want to
choose the target state, i.e. whether the feedback π pulse is given conditioned on
ground or excited state. This is contained in Fb polarity, which can be either ≥
or < and correspondingly defines the feedback condition as I(tfb) ≥ θ or I(tfb) < θ.

Timing in the feedback loop entirely depends on external triggers that enter
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the FPGA via the user-pins. There are three types of triggers, A, B and DDC,
referring to inputs from three different userpins. The fourth userpin serves as an
output port for the feedback trigger addressing the AWG Tektronix 520. The trig-
ger DDC is merely for reset of certain functions in the DDC block, such as the
phase of the digital LO signal. Triggers A and B are for separate use only and
have the purpose to mark different experimental settings. For example, trigger A
may indicate that the qubit was initially prepared in the ground state, while trig-
ger B signifies excited state preparation. Both triggers are handled equivalently
throughout the entire application, their significance lies in establishing statistics
about state preparation. Since triggers are programmed in the pulse sequence
on the marker channels, this two channel option enables one to concatenate two
sequences with alternating ground and excited state preparation and account for
long term fluctuations. Whether trigger A or B was active is stored in the so-called
diff-Bit.

The feedback application was designed for a two-step experiment with two
measurement periods. Each measurement requires the FPGA to be triggered in
advance, by how much needs to be determined experimentally. As a matter of
consistency, each trigger has to be given twice in a row. In order to keep track
of the measurement time, the rising edge of each incoming trigger is prolonged to
160 ns. This long trigger is linked to the enable port of a counter going up from
0 to 15 in the first, and from 16 to 31 in the second measurement. Reset of the
counter happens after the second trigger has arrived: A register gives the boolean
true after the falling edge of the first trigger, say A. To achieve reset after the
second trigger, the register output is joined with the falling edge of A by a logical
and and fed back to the reset port of the register. This gives a boolean Is Second
Measurement? which is not only used to reset the counter for measurement time,
but also to allow feedback triggers only during the first measurement (by inverting
it). An enable-trigger for the feedback evaluation is realized by joining the inverted
Is Second Measurement? with the trigger rising edge of trigger A or B by an and.
This one still needs to be delayed by Fb time to form the Fb enable. The feedback
trigger may then arise from the and combination of the Fb enable and the sign-bit
of the I quadrature voltage.

4.3.3 Histogrammer and tv-mode application

Next to feedback triggering, the FPGA also stores the measured quadrature data
after signal processing. In principle there are two ways to do this. Either the time
traces recorded for different pulse sequences are stored as a whole, as is the case
in the feedback tv-mode application. Labelling the pulse sequences generated by
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parameter values significance belongs to

Filter type “filter library”,
“boxcar 4-pt”,
“none”

choose FIR filter for the
DDC

fir_filter

post-filtering “none”, “binary
filter”

enable curvature sensi-
tive filter

fir_filter

integration “no”, “yes” enable integration fir_filter
Scale I1/2 2n (n=0,1,...,6) scale factor for I1/2

quadrature
signalMath_v02

Scale Q1/2 2n (n=0,1,...,6) scale factor for Q1/2

quadrature
signalMath_v02

SubI1/2 [−1, 1] subtract value from I1/2

quadrature (28 bit reso-
lution)

signalMath_v02

SubQ1/2 [−1, 1] subtract value from
Q1/2 quadrature (28 bit
resolution)

signalMath_v02

representation IQ, Aϕ save histograms in IQ

or Aϕ representation
signalMath_v02

Fb polarity ≥, < Fb is given if the I volt-
age is ≥ 0, < 0, respec-
tively

feedback_v04

Fb time 0,1,...,15 time for evaluation of
the Fb condition in first
measurement

feedback_v04

pointEXP N number of averages hist2D_v02
Hist3DTimeResV03 – choose between “time-

resolved” or “correlator”
option

hist2D_v02

Table 4.3.1: This table gives an overview of the options for operating the his-
togrammer operation. They can be adjusted in the control panels of the Labview -
application Cleansweep indicated in the right column.
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the AWG with an index k, this corresponds to the mapping

(k, t) 7→ sk(t) = Ik(t) + iQk(t). (4.2)

t denotes time in the measurement which is actually a discrete variable. Averag-
ing corresponds to adding up time traces that belong to the same pulse sequence.
Thus all statistical information except the arithmetic mean is discarded. For the
feedback application, however, it would be of interest to have a rough indicator
of the signal-to-noise ratio, too, such as the variance. Storing the average square
of the signal would allow to extract the variance since for any random variable
X, V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2, with E denoting the expectation
value.

In order to tackle both hindrances mentioned before, a histogram application
has been designed that is capable of storing single-shot data in form of time-
resolved (TR) quadrature histograms covering two measurement periods of 160 ns
each. Such time-resolved histograms have the only disadvantage, that all informa-
tion about time correlations is lost: In the feedback experiment, e.g., we cannot
identify data points in the first measurement of a particular single-shot trace with
those in the second measurement. To account for that problem, the application
provides an option that allows to switch to another mode of operation called cor-
relator (CORR). There, quadrature data is stored only at the feedback time and
for first and second measurement together.

Both options can be understood best by looking at the structure of the his-
togram output, meaning the indexing of the histogram bins (summarized in Table
4.3.2). First, we look at the TR histogrammer. The available information is com-
posed of the initial qubit preparation (”diff-bit“) db, the “feedback-bit” fb, the
measurement time t and the quadrature values I and Q. All of these variables are
represented by binary strings of various length (see Table 4.3.2) that are concate-
nated to form a binary address string of 21 bits. For the TR histogrammer, the
ordering is

(lsb(t), db, fb, I, Q, bit>0(t)). (4.3)

There is a technical reason for splitting off the LSB of t (lsb(t)) from the rest
(bit>0(t)) and putting it to the MSB position of the address string: Recording
data at 100MHz is challenging, and indeed this is only possible because there are
two RAM banks. By convention, the MSB of the address decides upon which of
the two RAM banks to write on. The LSB of t alternates uniformly between 0
and 1 reflecting the alternation of even and odd numbers. Thus, even times t are
written on RAM bank A and odd times on RAM bank B. Later, when retrieving
the measurement record this has to be undone. In fact, the address is a binary
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number, so Equation 4.3 actually means (according to Table 4.3.2) that

address = lsb(t) · 220 + db · 219 + fb · 218 + I · 211 +Q · 24 + bit>0(t)).

Similarly, the correlator features the variables initial qubit preparation (diff-bit) db,
the quadrature values I1 and Q1 at the delay Fb time in the first measurement pulse
and the quadrature data I2 and Q2 at the same delay in the second measurement
pulse. The ordering in the address is now

(db, I1, Q1, I2, Q2).

Note that the address being a (binary) number implies that data is stored in vec-
torial form. To obtain an array with components corresponding to the variables
that make up the address, the indices need to be decoded according to the struc-
ture above. That, as well as functions to generate marginal distributions of the
histogram data, has been realized in a Mathematica script.

parameter binary format used in mode
diff-bit boolean TR, CORR
fb-bit boolean TR
time t UFIX_5_0 TR
I , Q FIX_7_6 TR
I1,2 , Q1,2 FIX_5_4 CORR

Table 4.3.2: Summary of the address parameters used in the two histogram appli-
cations. The address strings have 21 bit resolution in total
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4.4 Summary

In this chapter a description of the feedback experiment conducted in this the-
sis has been given. The procedure is to dispersively measure a single transmon
qubit via a capacitively coupled coplanar waveguide resonator, digitally process
the measurement record on an FPGA and apply a π pulse conditioned on either
ground or excited state response. These latter cases are called negative and posi-
tive feedback, respectively.
The current setup has been designed in order to minimize the feedback delay down
to 250 ns including main contributions from ADC, digital signal processing and
triggering the feedback pulse on an AWG Tektronix 520.
Independent of the feedback loop, the FPGA also stores the obtained single shot
data in form of histograms. There are several histogram options to choose from:
Heterodyne data is either recorded in a time resolved or a correlated manner,
linking the pre- with the post-feedback state. Moreover, next to the standard
quadrature (I,Q) representation we may switch to the polar (A,ϕ) representation
which is directly calculated. The advantage of histogram data over single traces is
its compact form which allows to rapidly analyze experimental data.



Chapter 5

Analysis of experimental results

In this chapter experimental results constituting a proof-of-principle of the novel
FPGA feedback apparatus are analyzed and discussed. The techniques rely en-
tirely on the newly developed histogram and synchronized tv-mode FPGA appli-
cations for feedback. In fact, all measurements are preceded by calibration of the
qubit-resonator-paramp system as described in Section A.

5.1 Histogram single-shot data

We conducted experiments with a feedback loop as depicted in Figures 4.2 and
4.1. For single-shot analysis with the histogram application, ground and excited
initial states of the qubit were prepared alternatingly. For each histogram, a total
of 65’536 single-shot traces for each prepared state were accumulated. Moreover,
for each setting of the feedback loop (including filters, data representation, etc.)
we recorded data from three different protocols. First came a reference measure-
ment with the microwave generator for feedback switched off, such that feedback
was disabled. Thereafter it was turned on again and the effect of Rabi π pulses
conditioned on excited states was measured. This corresponds to a FB polarity of
0 (≥) and will be called positive feedback in the following. Likewise we repeated
the experiment with the π pulse applied to ground states (FB polarity = 1, <),
denoted negative feedback. The terminology is to be understood in terms of qubit
relaxation. Positive feedback aims at preparing a ground state and should thus
accelerate relaxation. In contrast, negative feedback prepares excited states and
thus counteracts relaxation.

45
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Figure 5.1: Time evolution of the transmitted resonator field during the first 150 ns
of the measured output. The upper row shows the response for the qubit prepared
in the ground state, the bottom row has the qubit prepared in the excited state.
Initially, there is no state information (0 ns) while full separation of the qubit
states is achieved at 150 ns.

5.1.1 Measurement dynamics and fidelity

Time resolved histogram data primarily gives insight into the dynamics of dis-
persive read-out. This is plotted in terms of the full IQ phase space record in
Figure 5.1 and in form of marginal distributions of the in-phase quadrature I, that
contains all qubit state information, in Figure 5.3. It is observed how ground and
excited state responses initially overlap completely and gradually get more dis-
cernible in the course of the measurement process. Hence, qubit projection onto
|g〉 or |e〉 gets more and more effective with longer read-out.

In order to quantify state discrimination we used the threshold method from
Section 3.3 and computed the measurement fidelity F = 1 − Pr[e|g] − Pr[g|e].
It is related to the probability that no detection error has occurred. Of course,
the fidelity depends on the parameters discrimination threshold and read-out time
which is plotted in Figure 5.2. Since data is stored in forms of histograms that
are discrete approximations to the probability density fρ0(i, q, t), these conditional
probabilities are easily calculated via

Pr θ[gt|ρ0] =

∫ a

−a

∫ θ

−a
fρ0(i, q, t) d i d q.

for initial state ρ0, threshold θ and the IQ data range [−a, a]× [−a, a] covered
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by the histogram. For the feedback experiment, we choose the values of discrimi-
nation threshold and integration time such that the read-out fidelity is maximal.
This procedure is motivated from the fact that successful feedback requires reliable
state information.

From the fidelity plot 5.2 we learn that the maximum fidelity was 0.80 at an
integration time of 150 ns after the measurement onset. Unfortunately there is no
more data beyond this point such that we do not know for sure if this is the true
maximum before saturation due to T1 relaxation sets in. An upper bound to the
fidelity, ignoring random excitation, is given by 1− e−∆t/T1 ' 0.86, meaning that
the fidelity reached in experiment is close to being T1 limited. All the same, an in-
tegration time of 150 ns is presumably to be not the best of what can be achieved.
The resonator rise time is limited by the cavity decay time 1/κ ' 26.5 ns and
analog filtering dominated by the paramp bandwidth on the order of 10 MHz (or
100 ns). The rate of information acquisition could still be improved by varying
the measurement pulse shape and optimizing the read-out power. However, phase
matching between paramp pump, resonator drive and down-conversion LO also
has an important influence on the SNR. Telling from the qudrature plots in Figure
5.1 it is probably at this point where SNR can potentially be improved most.

There are several observations that can be extracted from this data set. First,
in Figures 5.1 (IQ) and 5.3 we notice that |g〉 and |e〉 responses have quite differ-
ent distributions in phase space and show different dynamics. First, noise in the
|g〉 response is much larger. Moreover, unlike what is theoretically expected in a
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Figure 5.2: Here, the measurement fidelity is plotted as a function of measure-
ment time and threshold (left panel). Additionally, individual points in time are
selected to better visualize the threshold dependence (right panel). This is used
to determine the optimal timing and threshold in feedback experiments. Lines are
guides to the eye.
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phase-sensitive measurement, the application of the measurement tone does not
induce any shift of the |g〉 response. Only the |e〉 response is shifted and slightly
squeezed. Possible reasons for this behaviour include the calibration of the paramp
gain curve and the measurement frequency. From the gain curve in Figure A.5 it
can be concluded that the amplified bandwidth is quite large and the gain is not
uniform in the region around the pump frequency. This implies that noise with
frequency components irrelevant to the read-out might get amplified. Addition-
ally it is likely that the read-out frequency was detuned from the bare resonator
frequency ωr with a tendency towards the ground state frequency ωr − χ. This
causes a transfer of information from the phase to the amplitude, or from the I
to the Q quadrature. The latter is not observable because Q is attenuated due to
the phase-sensitive paramp. Additionally this might explain why there is as much
noise in the |g〉 response. If the pump frequency is degenerate with ωr − χ = ωr,g
then pump leakage will add to the |g〉 response and contribute to its noise level.

Moreover from the histograms in Figures 5.3 and 5.1 it is observable, that there
is non-negligible steady-state excitation of the qubit. This is not result of the rel-
atively high base temperature of ' 55 mK in the cryostat which theoretically
amounts to only 0.3% thermal excitation. Instead it might be possible that this
excitation is due to an average photon number of 〈n〉 ' 4 during the measurement,
about 10% of the critical limit. Other sources of spurious excitation are possible
but were not investigated within this work.

Finally we remark that the threshold chosen in experiment was not optimal.
The FPGA application sets the origin of the I quadrature to the manually input
threshold which is determined from a calibration measurement. It is more likely
that the incorrect threshold in the present data was caused by a computational
error than by any interim perturbation of the system. The phase between all
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Figure 5.3: Time evolution of the I quadrature only, as compared to Figure 5.1.
The distributions for initally prepared ground and excited states are shown in blue
and red, respectively. Note that the |g〉 response is quasi stationary.
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three measurements (reference, pos. and neg. feedback) is quite stable. All the
same, near the optimal integration time the fidelity curve broadens such that small
variations of the threshold around the maximum do not lead to big errors. From
Figure 5.2 can be read that the experimentally achieved fidelity was only about
60% instead of the optimal 80%.
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5.1.2 The effect of feedback

In this section the effect of feedback is analyzed, based on the results of the second
measurement and by comparison with the reference records. Next to time-resolved
data that are deprived of correlations between pre- and post-feedback state, we
have also explicitly probed these correlations. This gives deeper insight into the
paths of population transfer and the changes induced by feedback. Feedback errors
are directly observed, too.

Positive feedback has the objective of bringing the qubit to the ground state
while negative feedback aims at stabilizing an excited state. Indeed, Figures 5.4
and 5.5 not only show that the final read-out after feedback accumulates at the
respective target state, but also gives the same answer for each prepared input
state. This reflects that information about the input state is lost. However, it is

reference, no fb positive fb negative fb

(2)(1)

Q
 [a

.u
.]

I [a.u.]
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Figure 5.4: This figure shows the effect of feedback in both field quadratures.
Again, the top row shows initially prepared ground states and the bottom row
excited states. All phase space histograms were recorded at a delay of 150 ns after
the preceding pulse (preparation or feedback) which was also the read-out time
for feedback. The first two columns are reference measurements (after preparation
and feedback) with feedback deactivated. In the columns to the right the records
for positive and negative feedback in the second measurement are depicted. (1)
and (2) refer to first and second measurement, respectively.
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Figure 5.5: This plot shows the same data as in Figure 5.4 but only the marginal
distribution over the I quadrature which renders state information a lot more
visible. The threshold for feedback was set at zero in the experiment. Apparently,
the optimal threshold is shifted slightly towards positive values.

also observed that the quadrature distributions do not so much concentrate on the
target state but rather spread out over both, ground and excited state response.
Due to errors in the protocol there is hence an increase in entropy.
Investigating the error sources we find two major contributions. One is that mis-
identified states lead to the opposite of the desired result. A threshold shifted from
the optimal position produces a bias such that one of the two states is determined
better at the expense of the other. Consequently the feedback errors in reaching
the thus “handicapped” state are higher than for the other. In the present data the
threshold is biased towards the ground state response and thus positive feedback
is flawed. This effect becomes most evident in the correlated histograms (Figure
5.6).
More importantly, relaxation from the excited state into the ground state during
measurement and feedback operation is significant since ∆t/T1 ' 0.25. This cor-
rupts negative feedback in the obvious way and positive feedback in that correctly
identified |e〉 states decay in between measurement and feedback. Thus they get
re-excited by the feedback π pulse. Additionally the final state estimate is delayed
by another 150 ns reducing the fidelity to bring the qubit to the excited state. Of
course there is also the initial measurement delay that involves relaxation. For
feedback, however, we only care about the qubit state information at the instance
of the feedback decision. Clearly, due to the limited measurement bandwidth one
cannot speak of a distinct point in time but nonetheless we account for qubit decay
after preparation.

Correlating the records before, I1, and after feedback, I2, reveals the paths of
population transfer (see Figure 5.6). Any such histogram can be subdivided into
four regions corresponding to the correlations e → e, e → g, g → g and g → e.
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If thermal excitation in the steady state is low, then only the first three occur
in a system without feedback, apparent in the reference measurements. Without
feedback (left column in Figure 5.6), emphasis lies on the autocorrelation terms
e → e and g → g. Relaxation in between the measurements (e → g) is with 37%

contribution (see Table 5.1.1) a non-negligible contribution.
With feedback active this picture changes profoundly. Ideally, positive feedback
should leave the g → g path untouched but flip e → e with e → g. That it flips
the latter is easily understood by noting that e → g describes decays after mea-
suring |e〉. Thus the feedback π-pulse will re-excite in these cases. In an analogous
manner, negative feedback fixes e → e but interchanges g → g with g → e. In
summary, positive and negative feedback put weight to the e → g and g → e

correlations, respectively.
So far we only described feedback with relaxation, but without detection errors
due to a bad threshold. A closer look at the region between experimental (solid
line) and optimal (dashed line) discrimination threshold, [θexp, θopt] on the I1 axis,
reveals this effect. There, the population transfer is directed opposite to the cor-
rect feedback action. Moreover, confinement to the region [θexp, θopt] is lost in the
second measurement, i.e. the I2 axis, which indicates uncorrelated noise.
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Figure 5.6: Correlations between first and second measurement record for refer-
ence measurement without feedback (left), positive feedback (middle) and negative
feedback (right). The solid and dashed white lines indicate the experimental and
the optimal threshold, respectively. Each plot is subdivided into the regions of
discrete population transfer correlations ρ1 → ρ2 (ρ1,2 ∈ {g, e}). These regions are
bounded by the optimal threshold.
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As a general result, feedback errors, due relaxation or mis-identification, lead to a
population transfer that is opposite to the one desired. Due to their probabilistic
nature, the two errors cannot cancel on average. We note that it might be desir-
able to detect the ground state more reliably since it is most stable.

Next we look at the conditional probabilities listed in Table 5.1.1. There are
four types of binary parameters: qubit preparation ρ0, first measurement record ρ1,
second measurement record ρ2 and the feedback response σfb. The first measure-
ment record (ρ1) is conditioned on preparation (ρ0) and the second measurement
record (ρ2) is conditioned on preparation (ρ0), feedback response σfb and first
measurement record (ρ1). To calculate the state probabilities from measurement
the optimal threshold was used. Instead, σfb obviously refers to the experimental
threshold which makes it interesting to compare σfb and ρ1. The probabilities
Pr[ρ2|ρ1] are obtained from correlated data, all others are based on time resolved
measurements. σfb = 1(0) signifies that the feedback operation was triggered (not
triggered).

The probabilities Pr[ρ1|ρ0] are merely a restatement of the read-out quality
and concern the measurement fidelity only. Feedback effects can be read from the
remaining probabilities, only. In general we learn that the probability to reach
any target state (ρ2), provided the initial (ρ0) or initially measured state (ρ1) was
the ground state, is always superior to that obtained from starting in the excited
state. Moreover, this discrepancy is even stronger for conditioning on the initially
measured state which is actually relevant for feedback. Another important fact is
that positive feedback and negative feedback produce significant errors in stabi-
lizing states, i.e. for ρ2 = ρ1, by comparison with the reference. Thus feedback
is actually harmful in these particular situations. Another interesting aspect is
revealed by comparison of Pr[ρ2|ρ1] with Pr[ρ2|σfb]. For example in negative feed-
back, we see that if a π-pulse was triggered (σfb = 1), the subsequent excited state

probability no FB pos. FB (≥) neg. FB (<)
Pr[ρ1 = e|ρ0 = g] 0.07 0.07 0.08
Pr[ρ1 = e|ρ0 = e] 0.86 0.79 0.81
Pr[ρ2 = e|ρ0 = g] 0.07 0.14 0.77
Pr[ρ2 = e|ρ0 = e] 0.58 0.27 0.67
Pr[ρ2 = e|σfb = 0] 0.04 0.04 0.58
Pr[ρ2 = e|σfb = 1] 0.51 0.37 0.86
Pr[ρ2 = e|ρ1 = g] 0.05 0.11 0.79
Pr[ρ2 = e|ρ1 = e] 0.63 0.32 0.61

Table 5.1.1: Conditional probabilities for all three feedback scenarios.
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probability is very high (0.86) while it is rather low (0.58) if it was not triggered
(σfb = 0). The reverse is true for positive feedback. Together, this is a clear hint
that qubit states were not properly discriminated (threshold error), i.e. a signifi-
cant number of ground states was identified as excited states.

The correlated histograms (Figure 5.6) also visualize a discrepancy for mea-
sured excitation Pr[ρ1 = e|ρ0 = e] between reference and feedback experiments.
This is also manifest in the much larger population of the g → g correlation for
reference and positive fb. In feedback experiments there remains ' 6% less exci-
tation at the integration time (see Table 5.1.1). The only experimental difference
between these data sets lies in the microwave generator for the feedback pulse be-
ing turned off during the reference measurement. We conclude that leakage from
this microwave generator seems to deteriorate the quality of the preparation pulses
or inflict state mixing upon the qubit. The latter possibility is actually ruled out
since the effect appears only for preparation of the excited state and does not lead
to increased excitation of initial ground states.

When looking at the conditioned time evolution of identified ground and excited
states after feedback in Figure 5.7, we remark that the best results are obtained if
the identified state was a ground state which corresponds to fb=0(1) for positive
(negative) feedback. This is plausible because the ground state is stable and the
threshold is such that there is little uncertainty in the estimate.
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5.1.3 Evaluation of the feedback efficiency

Finally it is interesting to assess the quality of the feedback protocol. To this end
we define the feedback efficiency as the probability to reach the target state |ψ〉
which is related to the state fidelity

ηψ = Tr
(
ρ|ψ〉〈ψ|

)
= 〈ψ|ρ|ψ〉.

For positive and negative feedback the target states are |g〉 and |e〉, respectively.
In total, the final qubit excited state population was 0.72 for negative and 0.20 for
positive feedback. The feedback efficiencies were thus 0.72 and 0.80 respectively.
Without feedback, the remaining excitation amounts to 0.33. These values are av-
eraged over all preparations in both, ground and excited state which is equivalent
to an inital totally mixed state (|e〉〈e|+ |g〉〈g|)/2.
These values confirm that negative feedback, although more difficult due to the in-
stablility of the excited state, has performed quite well and positive feedback could
do better. Certainly, more careful calibration of the threshold and the paramp
would contribute much to improve the efficiency. Still, the ultimate limitation will
always be due to T1 relaxation beacuse the feedback delay leads to ' 22% decay
between measurement and feedback operation.
Note that instead of pure target states, one could obtain more general target
states that account for relaxation from a calculation according to the feedback
Kraus representation in Equation 3.10 with modified Kraus operators (λ = e, g)

Wλ = Uλ e
Ltf Mλ(tm). (5.1)

This accounts for the feedback delay tf and the measurement operators include
the time tm needed to generate the state estimate. Free open system evolution
is given by the Liouvillian L (ρ̇ = Lρ). A simplified version would be to replace
Mλ(tm) by Πλe

Ltm with projectors Πλ onto the qubit σz eigenstates.

In order to characterize the feedback process in greater detail it is advanta-
geous to study the doubly conditional probabilites given in Table 5.1.2. Han-

probability no FB pos. FB (≥) neg. FB (<)
Pr[ρ2 = e|ρ0 = g ∧ σfb = 0] 0.04 (0.35) 0.04 (0.42) 0.29 (0.08)
Pr[ρ2 = e|ρ0 = g ∧ σfb = 1] 0.16 (0.15) 0.65 (0.08) 0.86 (0.42)
Pr[ρ2 = e|ρ0 = e ∧ σfb = 0] 0.04 (0.04) 0.04 (0.08) 0.63 (0.42)
Pr[ρ2 = e|ρ0 = e ∧ σfb = 1] 0.62 (0.46) 0.31 (0.42) 0.86 (0.08)

Table 5.1.2: Double conditional probabilities for all three cases. Second measure-
ment record (ρ2) conditioned on preparation (ρ0) and feedback (σfb). The values in
brackets give the probabilities Pr[σfb ∧ ρ0] with which the condition events occur.
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dling conditional probabilities without knowing the corresponding base rates, i.e.
the probabilities with which the condition events occurred, is sometimes mislead-
ing. Thus these are also written down as a reference. For example the values
Pr[ρ2 = e|ρ0 = g ∧ σfb = 1] = 0.65 for positive feedback and Pr[ρ2 = e|ρ0 =

g ∧ σfb = 0] = 0.29 for negative feedback seem astonishingly high. However, the
events {ρ0 = g ∧ σfb = 1, 0} occurred only with probability 0.08 in the respec-
tive feedback modes, a reason why errors can affect them more strongly. On the
other hand we have in mind that next to spurious excitation, these are mostly
the cases where true |g〉 states have been misidentified as |e〉 due to the biased
threshold. We remark that for the qubit initially prepared in |e〉 these errors are
smaller which speaks for |e〉 states being identified reliably if they have not decayed.

Finally we note that in an ideal scenario the events {ρ0 = g, e∧σfb = 0} should
be equivalent. This is simply a restatement of the fact that feedback depends only
on the measurement outcome used for deciding upon whether to apply a π pulse or
not. As seen from the table, this holds true only for Pr[ρ2 = e|ρ0 = g, e ∧ σfb = 1]

in negative feedback and Pr[ρ2 = e|ρ0 = g, e ∧ σfb = 0] in positive feedback. For
the rest, the discrepancies might again arise from state misidentification on the
basis of a biased threshold.

5.2 Suppression of Rabi oscillations

Up to this point, considering ground and excited states only, an essentially classical
description of the feedback operation was sufficient. Now it is of further interest
to interpolate between these two poles of the Bloch sphere and consider arbitrary
superpositions. This was realized by replacing the initial zero or π pulse for state
preparation with Rabi pulses of flip angle ϑ. In the Bloch sphere representation,
these pure states are

|ϑ, ϕ〉 = cos (ϑ/2) e−iϕ/2|g〉+ sin (ϑ/2) eiϕ/2|e〉. (5.2)

Here, ϕ is a phase angle which corresponds to the rotation axis (0 for x and π for
the y-axis). Ideally, the first measurement projects the superposition state onto
the z-axis of the Bloch sphere and destroys quantum coherence. With probabilities
cos2(ϑ/2) and sin2(ϑ/2) we find the qubit in the ground and excited state, respec-
tively. If we assume the measurement to be QND and neglect decay, then the qubit
will remain in the state onto which it has been projected until the feedback pulse
arrives. The result of the feedback should be the same as for preparation of ground
or excited state. However, decay is not negligible as we have seen in the previous
sections. Thus with increasing Rabi angle feedback fidelity will deteriorate.
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Rabi measurements produce ensemble averaged time traces. Usually the qubit
population is inferred by a fit to the cavity Bloch equations [Bianchetti et al., 2009]
introduced in Section 2.2:

Pr[ρ = |e〉〈e|] =
1

T

∫ T

0

(
sρ(t)− ŝg(t)
ŝe(t)− ŝg(t)

)
d t. (5.3)

Where the hatˆindicates theoretical traces which are solutions to the cavity Bloch
equations and s is a single quadrature signal (I or Q). Integration always extends
over the full measurement record.
However phase-sensitive parametric amplification destroys information in the at-
tenuated quadrature. Moreover the first measurement is much shorter than qubit
relaxation time. Both make it hard to apply cavity Bloch fits for determining the
qubit population. Thus a modification to Equation 5.3 could be made by replacing
the theoretical ground and excited state response with the observed responses for
hypothetical ground and excited states. Moreover, due to divergences, a further
change to Equation 5.3 was made to obtain the relative excitations

Pr ′[ρ = |e〉〈e|] =

∫ T
0

(sρ(t)− ŝg(t)) d t∫ T
0

(ŝe(t)− ŝg(t)) d t
. (5.4)

The reference traces ŝg,e were determined experimentally: Excited state traces
were produced with (calibrated) π pulses directly before the measurement pulse
and measuring without any pulse yielded the ground state traces. For the first
measurement these were the Rabi traces with corresponding Rabi angles. For the
second measurement we switched off the microwave generator for qubit preparation
and set the threshold such that the feedback π-pulse was triggered always or never.

As it turned out, switching feedback microwave generator on and off slightly
influenced the Rabi dynamics. An increase in the Rabi frequency by ' 17% and
a decrease in the Rabi amplitude of up to ' 15% was observed when the mi-
crowave generator was on (see Figure 5.8 on the left). This implies off-resonant
driving which possibly originate residual leakage of the LO signal through the up-
conversion mixer. By populating the resonator the qubit transition can get a.c.
Stark shifted. Direct driving of the qubit is unlikely due to the detuning of the
microwave source by an IF of 100 MHz.
From a technical perspective, mixer calibration for that microwave generator was
delicate, because the AWG Tektronix 520 does not possess d.c. input ports for
both of its channels. D.c. offset calibration was therefore realized by means of bias
tees controlled by another AWG Tektronix 5014.
All the same this feature lead to the difficulty that signal and reference traces
had to have the same microwave generator activity (on/off). Otherwise negative
populations were obtained. For that reason we normalized each Rabi record by
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subtracting the ground state response from the same record and dividing by the
largest achieved difference

∫ T
0

(ŝe − ŝg) d t for that particular measurement period
(1 or 2). For the first measurement this was the “no feedback” trace, for the sec-
ond the difference between negative and positive feedback traces for ground state
preparation was largest. By this method only relative excitations are extracted
such that the amplitude modulations are comparable but not the absolute values
of excitation.

Finally, the suppression effect on Rabi oscillation by means of a conditioned
π pulse is displayed in the middle of Figure 5.8. It is apparent that this works
quite well for ground states and gradually declines with increasing Rabi angle until
the excited state. The same effect has been observed in the previous data, even
though not as strong, and was related to threshold bias and relaxation. Here
these effects occur, too. In particular, determining the optimal threshold is hard
as the average traces do not contain any information about the real statistics.
Actually the threshold can be adopted directly from histogram single-shot data
since both application are fully synchronized. However both experiments need
different FPGA triggers such that new pulse patterns need to be loaded onto the
AWGs. Unfortunately this reprogramming also destroys phase relations such that
these have to be recalibrated entirely and the thresholds may not coincide any
longer.
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Figure 5.8: Partial suppression of Rabi oscillations due to feedback. Only relative
excitations are plotted as absolute populations could not be reliably determined.
Left: Rabi oscillations obtained in the first measurement. There is an increase in
the Rabi frequency and a decrease in the excitation amplitude when the microwave
generator for feedback is turned on; in the reference measurement it is switched
off. Right: Rabi oscillations are partially suppressed and inverted as an effect of
a conditioned π pulse on |e〉 and |g〉, respectively.
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5.3 Summary

The discrete feedback protocol to deterministically steer a transmon qubit towards
ground or excited state, called positive and negative feedback, respectively, has
been tested successfully. The achieved probabilities to reach either state were 0.80
and 0.72 for ground and excited state which compares to 0.67 and 0.33 without
feedback.

Some sources of errors have been recognized by analysis of time resolved single
shot histograms and correlations between the pre- and post-feedback states. The
main issues were the QND nature of the measurement, signal to noise ratio, the
discrimination threshold and qubit decay in between state identification and feed-
back operation.
As an effect of the enhanced measurement power corresponding to 4 photons on
average random excitations of the qubit amounting to ' 7% for prepared ground
states were observed. This is to be taken as a hint that the measurement was not
entirely QND and hence contributes slightly to a distortion of the feedback opera-
tion. On the other hand, in order to make the pointer states distinguishable SNR
needs to be sufficiently high. The reason for the failure of 1 photon measurements
to achieve full separation is deemed to lie in a detuning from the bare resonator
frequency that distributes qubit information over both quadratures. This reduces
the effectiveness of phase sensitive amplification. Additionally, noise from pump
leakage might have excessively broadened the ground state response which is sup-
posed to have been degenerate in frequency with the pump.
We found that the experimentally adjusted threshold did not coincide with the
theoretically optimal threshold. Thus state mis-identification made the feedback
produce the opposite result of what was intended. These were clearly visible in the
correlated histograms which also gave detailed insight in the paths of population
transfer from the first measurement to the second.
Finally, qubit decay was the most important source for errors. The pure feedback
delay amounts to 250 ns which is about one quarter of the qubit relaxation time.
This is accompanied by 150 ns integration time to determined the qubit state with
maximal SNR. Apparently this substantially contributed to feedback being less
efficient if the initially measured (or prepared) state was an excited state.
Recently, similar experiments have been conducted by Risté et al. [2012a]. The
main difference to this work lay in the experimental setup with a 3D cavity en-
abling a qubit relaxation time of up to 50 µs. Accordingly, state discrimination
was almost perfect with fidelities after initialization by measurement [Risté et al.,
2012b] above 90%. On the contrary digital signal processing was not performed
on an FPGA and thus took more than 4 µs which is about 20 times longer than
what was achieved in this work.



Chapter 6

Conclusion

This thesis applies several concepts of circuit QED and quantum optics for the
experimental implementation of a discrete feedback protocol to deterministically
prepare ground and excited states in a superconducting transmon qubit. A quan-
tum non-demolition measurement of the qubit state is followed by classical infor-
mation processing to compute the appropriate feedback operation, i.e. a π pulse.
With the help of field-programmable gate array electronics a feedback response
time of 250 ns was realized which is well below the measured relaxation time (T1)
of 970 ns. Thus the application developed here demonstrates a first step towards
real-time signal processing in a circuit QED architecture. Despite non-negligible
errors, the experimentally achieved target state fidelities after feedback amounted
to 80% for the ground state and 72 % for the excited state. These were obtained
with uniform intitial preparation in either of the two states.

The most important limitations to the protocol were identified to be the feed-
back delay between measurement and feedback operation, and single shot read
out fidelity. Both need to be improved in order to make the scheme more reliable
and allow generalisations for applications in quantum error correction or telepor-
tation. This goes along with taking the step towards multi-qubit read-out as well
as active calibration of the read-out apparatus. Since phase sensitive amplification
is involved the relative phases of three microwave tones need to be matched and
possibly re-adapted throughout the experiment.

Feedback delay, i.e. the time it takes to compute and trigger the feedback oper-
ation, may not be decreased by much if digital signal processing is involved. Some
improvements are to be expected from an FPGA with a bandwidth in the GHz
range (such as Xilinx Virtex 6 ) but probably analog devices need to be employed
for that particular task. Moreover, the detour of triggering pulses on an AWG
might be avoidable if a continuous qubit drive is directly modulated by the output
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of the feedback device.

Still, the question arises how qubit state estimation can be designed efficiently
in an analog and continuous scenario. In fact, recent applications of Bayesian up-
dating either use linearizations [Vijay et al., 2012] or operate at optical frequencies
with feedback iteration times on the order of 100 µs [Sayrin et al., 2011]. The latter
is about three orders of magnitude larger than what is required for superconduct-
ing circuits. On the other hand, working with three dimensional cavities instead
of coplanar waveguide resonators can enhance qubit coherence times by about one
to two orders of magnitude [Paik et al., 2011]. For such a setup, our FPGA based
feedback protocol would already be fast enough to address more complex tasks.
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Appendix A

Measurement and calibration
procedure

In this section a brief summary of the experimental procedure is given that allows
one to measure single shot and feedback histograms. This encompasses

1. a.c. Stark and dispersive shift

2. π pulse calibration via Rabi oscillations

3. exact qubit frequency via Ramsey

4. paramp calibration

5. phase calibration between measurement drive, pump and heterodyne LO

A.1 A.c. Stark and dispersive shift

First, system spectroscopy is conducted to find the transition frequencies ωr,g of
the resonator with qubit in the ground state and ωge of the qubit1 (g ↔ e) together
with their coupling strength g, qubit anharmonicity α = ωgf/2 − ωge ≈ −Ec/~
and resonator half width at half maximum κ.
Based on that, we measure the a.c. Stark shift 2〈n〉χ from qubit spectroscopy as
a function of the measurement power ∝ 〈n〉 (Figure A.1). This serves to calibrate
the measurement power corresponding to one photon and to the critical photon
number. For both calibrations the theoretical value of the dispersive shift χ from
Equation 2.4 is used. Alternatively one can also determine χ from the frequency
shift of the resonator if the qubit is continuously driven. For large qubit drive
power saturation sets in and the bare resonator frequency ωr = ωr,g + χ is ap-
proached.

1The qubit transition frequency has to be tuned to the desired spot via magnetic flux.
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In these measurements all microwave signals passed an up-conversion mixer mod-
ulated by an AWG for pulse generation such that it was not possible to sweep
the generator output power P . Instead the output amplitude of the AWG was
sweeped which leads to a calibration of the pulse amplitude ∝

√
P ∼

√
〈n〉.

For all successive experiments we work with measurement powers corresponding to
few photons (1 to 4) and the measurement frequency tuned to the bare resonator
frequency ωr.
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Figure A.1: A.c. Stark shift of the qubit g ↔ e transition measured by varying
the measurement pulse amplitude which leads to a quadratic dependence (left).
Blue color indicates reduced transmission, orange represents unit transmission.
On the right we plot the frequency shift versus read out power which gives linear
dependence in excellent accordance with theory. From the slope the 1 photon
power can be extracted.

A.2 Rabi pulse calibration

The next step is to calibrate the amplitudes for qubit π (and π/2) pulses at a given
pulse shape. In these measurements Gaussian pulse envelopes with full width at
half maximum or 15 ns were employed. To that end we record Rabi oscillations
by increasing the amplitude of a qubit pulse (Figure A.2). The measurement
pulse is positioned just after the Rabi pulse such that it does not distort the
qubit frequency. The populations are determined via a fit to the solutions of the
cavity Bloch equations (Equations 2.12 and 5.3). These amplitude calibrations are
conducted with both AWG’s Tektronix 5014 and Tektronix 520.
Additionally, the qubit relaxation time T1 is obtained from measuring the qubit
population in dependence of the delay between a Rabi π pulse and the read-out
pulse (Figure A.3). At this step it should be reconsidered whether the qubit
resonator detuning is appropriate for the feedback experiment in terms of T1 and
the read out SNR.
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Figure A.2: Rabi oscillations of the qubit excited state population with pulses
generated from the AWG Tektronix 5014 (top) and AWG Tektronix 520 (bottom).
The pulse amplitude is given in units of V. The π/2 and π amplitudes for Rabi
pulse calibration are marked by red dots.
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Figure A.3: Excited state population decay obtained from of a T1 relaxation mea-
surement.

A.3 Exact qubit frequency

Rabi pulses achieve maximal excitation of the qubit only if the detuning between
the drive and the g ↔ e transition frequency is zero. In order to establish this con-
dition a Ramsey interference experiment is conducted. The qubit drive frequency
is slightly detuned from the originally determined ωge (typically by 4 MHz) and
the revival oscillations after two successive π/2 pulses are measured as a function
of the inter-pulse delay. Since we work in a rotating frame at the qubit drive
frequency this should simply reproduce the manually introduced detuning from
the true qubit frequency (Figure A.4). Moreover the oscillations decay with the
transverse relaxation time T2. This experiment needs to be conducted with only
one AWG. Afterwards the Rabi amplitudes need to be redetermined.
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Figure A.4: Experimental Ramsey fringes that decay with T2.

A.4 Paramp Calibration

Now that the qubit-resonator system is fully characterized, we turn to the paramp
which has not been employed so far. Remind that phase sensitive amplification
needs precise knowledge of the bare resonator frequency where all qubit state
information is contained in a single quadrature of the transmitted field. Thus we
need to finally set the measurement drive as well as the paramp pump to that
frequency.
First the paramp is characterized by measuring its resonance (driven by the pump
at moderate power) as a function of magnetic flux. After settling to a resonance
frequency near the later working point and setting the pump frequency to the bare
resonator frequency, gain and bandwidth are measured as a function of the pump
power and the magnetic flux. This is achieved by adding a strongly attenuated
(-60 dBm) test signal provided by a second mw generator.
At a point with moderate gain (∼ 20 dB) and bandwidth (∼ 10 − 20MHz) and
reasonable gain curve (Figure A.5), the residual pump signal leaving the paramp
has to get cancelled such that only the true signal is observed. This cancellation
procedure [Govenius, 2012] is realized by means of destructive interference with a
coherently displaced and phase shifted branching of the pump (Figure A.6).

A.5 Phase calibration

After setting up the qubit-resonator and paramp systems separately we still need
to synchronize the relevant phases of their drives (measurement tone and pump
tone) in order to amplify the significant quadrature. We do so by sweeping the
phase of the read-out tone, keeping the pump phase fixed, and thereby maximize
the (averaged) state distances |αe − αg| between ground (g) and excited (e) state
responses. Here, α = I + iQ. By keeping both qudratures, we can neglect the
down-conversion LO phase in this step. Once the relative phase between read-
out and pump phase is adjusted correctly (maximal state discrimination in both



APPENDIX A. MEASUREMENT AND CALIBRATION PROCEDURE 73

7.05 7.10 7.15 7.20
5

10

15

20

25

Frequency @GHzD
G

ai
n

@d
B

D

Figure A.5: The measured gain curve for the paramp settings used for the feed-
back experiments in this thesis. At ∼ 7.134 GHz there is a slight spike which
might be due to imperfect pump displacement cancellation. This curve is rather
inhomogeneous compared to an ideal Lorentzian possibly causing undesired noise
properties. This has however not been further investigated.

JPA

directional coupler

coherent displacer
phase shifter

pump

signal

Figure A.6: Input and output of the Josephson parametric amplifier (JPA). The
input modes are denoted a, the output or amplified modes b. The pump (p)
is splitted into two parts in order to generate a cancellation signal (by coherent
displacement and phase shifting) that destructively interferes with the residual
pump signal. In the end the output originates exclusively from the signal (s)
input.

quadratures), we can tune the LO phase such that all phase information is con-
tained in the I quadrature only. This is the qudrature the FPGA looks at to make
its state estimate.
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Figure A.7: Measured average distinguishability of ground and excited state while
read out phase (left) and down-conversion LO phase (right) are sweeped in order to
find the optimal positions. The time averaged distances between the pointer states
in I quadrature (blue) and Q quadrature (red) are shown in both graphics. For
the read out phase, maximal distinguishability refers to maximum of the absolute
difference |αe − αg| from both quadratures which is drawn in yellow.



Appendix B

FPGA feedback application

In this section, the relevant block diagrams of the feedback FPGA application
which were created with the software Simulink by MathWorks Inc. are presented.
This is not meant as a detailed description but rather as a list to complement the
description in Section 4.3.2. The steps covered are, in the given order,

1. digital down conversion and filtering

2. digital signal processing and feedback loop

3. histogram address generation for storage on the RAM

Figure B.1 also provides an overview of the chronology of the signal processing in
the FPGA.
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Figure B.1: A rough overview of the signal processing steps in the FPGA and their
chronological order.
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Figure B.2: Digital down conversion and filtering, part 1: digital down conversion.
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Figure B.3: Digital down conversion and filtering, part 2: filtering.
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Figure B.4: Signal processing after digital down conversion and filtering, part 1.
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Figure B.5: Signal processing after digital down conversion and filtering, part 2.
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Figure B.9: Composition of the histogram address string.


