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Abstract

Recent work [1], [2], [3] has been done on establishing and characterizing microwave

beam splitters for applications in the field of circuit quantum electrodynamics. It was

shown that an equivalent to optical devices can be fabricated based on superconducting

circuitry. As tests have shown that produced beam splitters work within an appropriate

frequency range and split incident signals with almost 50:50 ratio, one can head towards

performing quantum mechanical experiments incorporating single-photon sources and

entanglement of certain input states. The measurement of correlation functions of a

single photon source that is divided by an appropriate beam splitter is of special interest

to the field. However, it is also interesting to analyze the correlation functions of various

other types of electromagnetic fields sent through the microwave beam splitter.

In this bachelor thesis, the behavior of beam splitters in a cryogenic setup was deter-

mined and the theory of correlation functions was reviewed. LabView data acquisition

software was written to allow measurements of statistical correlations of the signals

entering the data acquisition system. Auto- and cross correlations of coherent and

thermal fields as well as mixtures between them were recorded. Corresponding data

was analyzed to determine the amplifier noise temperature inside the cryostat. The

attenuation and total amplification inside the cryostate setup could be calculated. The

measurements of non-time and time-resolved auto- and cross correlations compared

well to theory. To show the effect of a blackbody radiation source attached to the in-

put, a quasi thermal field based on a white noise source over a limited bandwidth was

generated.

Although the thermal field measurements did not agree with theory, the properties of

the measured signals could be understood. The results given in this thesis may pave

the way for future experiments incorporating a temperature-controlled resistance acting

as a real blackbody emitter. Making use of superconducting qubits as single photon

source, the work presented here should also allow measurements of correlation functions

of single photons.
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1 Introduction

In optics, the work with beam splitters and correlations functions almost belongs to

daily routine. When working with microwave fields in a electrical circuit, a differ-

ent approach is required. Instead of single half-silvered mirrors, one must use special

transmission line circuits to realize a beam splitter. Instead of using photodetectors,

unavailable at microwave frequencies, one amplifies signals to detect them with conven-

tional electrical circuitry. In this thesis, I will make use of the microwave counterparts

of optical beam splitters that have been presented previously [1], [2], [3] and describe

the theoretical and experimental premises required for recording correlation functions.

Correlation functions

A correlation function is the measure of how two signals of any kind are correlated

with each other. In optics, these functions may be used to show spatial or temporal

differences between two light paths or determine coherence properties of a light source.

Therefore, correlation functions also determine the degree of coherence of a source of

photons. One can distinguish between autocorrelations and cross correlations, i.e. the

correlation between a signal and itself and the correlation of two different signals.

The use of correlation functions is not restricted to the field of optics. There are also

applications for financial mathematics, general signal processing, music recording and

statistics and probability theory.

However, a well known application for correlation function measurements can be found

in optics: the classical beam splitting experiment [4], [5]. Sending a light beam emitted

from a source that creates only one photon (i.e. a single photon source) to a 50:50 beam

splitter divides the beam into two light paths, see Fig. 1.1 a). These paths are directed

into coincidence counters which can detect the presence of single photons. It is now

important to notice that it is not possible to detect one photon at both detectors at

the same time, i.e. the single photon created either passes the upper or lower path,

but never both simultaneously. One can then record the counting statistics of both

detectors (i.e. the photon counts) in dependence on time and calculate the correlation

between the two measurements. As the photon counts can never appear simultaneously,

the signals are perfectly anticorrelated for zero time-difference.
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Figure 1.1: a) Sketch of optical beam splitter. b) Schematic of the electrical circuit of a microwave
quadrature hybrid. c) Coplanar waveguide design of the quadrature hybrid used in this project. (1) to
(4) denote the port number. Niobium CPW lines each have a length of 4670 µm: lines (A) correspond
to an impedance of Z0 = 50Ω whereas lines (B) correspond to Z0/

√
2 = 35.35 Ω. CPW dimension

are given by a1 = 5.0 µm and b1 = 9.5 µm for Z0 = 50 Ω and a2 = 12.0 µm and b2 = 15.0 µm for
Z0/

√
2 = 35.35 Ω. In (C) alignment markers are illustrated. Figures taken from [1].

Microwave beam splitters

In optics, one can use optical beam splitters and two detectors to measure the cor-

relation functions of the outputs. Working with microwave frequency radiation, one

needs to consider new devices working in this frequency range that are also suitable

for experiments in circuit quantum electrodynamics. Devices discussed in [1], [2] and

[3] provide appropriate characteristics for this field. The microwave beam splitters are

fabricated on a superconducting microchip using coplanar waveguide transmission lines,

see Fig. 1.1 c). The geometries needed for the device are sketched in Fig. 1.1 b). With

niobium as superconducting thin film on a sapphire substrate, the device must be cooled

down below its critical temperature of 9.2 K. In previous experiments this was done

by using a dipstick plunged into liquid helium. To analyze the properties of the beam

splitter, one may make use of a microwave generator. The simplest way is to take a

Vector Network Analyzer (VNA) that generates a signal, sends it through the device

and measures transmission and reflection of the circuit in a phase sensitive way. The
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transmission loss (or scattering matrix parameter) is a logarithmic magnitude that can

be used to determine whether the splitting device works adequately. That means that

the ingoing signal needs to be split equally to the two outputs, which corresponds to

a transmission loss of −3 dB each. In addition, the beam splitter should work over a

frequency range of 1-2 GHz.

Measuring correlation functions in the GHz range

With these devices, one can try to measure correlation functions in the GHz range.

In order to facilitate single photon measurements, a temperature of 20 mK is required

to ensure that typical thermal fluctuations range much below quanta corresponding to

single photon transitions [6]. One therefore uses a cryostat to create a superconducting

environment instead of dipping the sample into liquid helium inside a dewar. The

beam splitter then needs to be connected to microwave electronics via various cables

in- and outside the cryostat. A set of amplifiers and attenuators that keep the power of

the signal in the right range is needed to record the signals at a data acquisition card

afterwards. As amplifiers add thermal noise to the signal, a mixture between a thermal

field and the specific field created at the input needs to be considered. By using two

independent amplifiers, one can eliminate the noise when recording cross correlations.

For a detailed description of the measuring setup, see chapter 3.1.

Circuit Quantum Electrodynamics

In circuit quantum electrodynamics (circuit QED) the interaction between light and

matter is investigated. Superconducting circuits acting as artificial atoms (qubits) can

be placed on superconducting microchips and coupled to microwave resonators [7]. Ac-

companied by fabrication techniques well known from integrated circuit manufacturing,

this gives rise to a highly scalable and controllable two-level system that can be read out

easily. Recent work has been done on examining sideband transitions between trans-

mission line resonator and qubit [8]. In future, transitions in the circuits could be used

as single photon emitters.
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2 Theory

2.1 Correlation functions

One can distinguish between first- and second-order coherence functions. First-order

coherence functions relate to correlations of the fields and may be used to determine

the degree of coherence or coherence length of light. However, one is unable to obtain

any statistical information from first-order coherence functions. With the second-order

coherence function, which relates to correlations of intensities rather than fields, this be-

comes possible. Although this thesis concentrates on second-order coherence functions

mainly, in the following section both cases are discussed.

First-order coherence

For two points in space at time t, x1 = (r1, t) and x2 = (r2, t), the normalized first-order

coherence function reads [4]

g(1)(x1, x2) =
tr{ρ̂Ê(−)(x1)Ê

(+)(x2)}√
tr{ρ̂Ê(−)(x1)Ê(+)(x1)} tr{ρ̂Ê(−)(x2)Ê(+)(x2)}

(2.1)

=
〈Ê(−)(x1)Ê

(+)(x2)〉√
〈Ê(−)(x1)Ê(+)(x1)〉 〈Ê(−)(x2)Ê(+)(x2)〉

, (2.2)

where it has been used that the expectation value of a quantum mechanical observable

Â is given by 〈Â〉 = tr{ρ̂Â}, with ρ̂ the density operator to the corresponding state.

Ê(+) is the component of the electromagnetic field that describes absportion (called

positive frequency part). In the Heisenberg picture it is given by

Ê(+)(r, t) = i
∑
k,s

√
~ωk

2ε0V
eksâks(t), (2.3)

summing over all modes with wave vector k and polarisation s. This expression also

contains the frequency ωk corresponding to the wave vector by ωk = ck, a volume V

in k-space, the polarization vector eks and the field annihilation operator âks(t). The
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negative frequency part corresponding to emission Ê(−) is simply the complex conjugate

of Ê(+):

Ê(−)(r, t) =
[
Ê(+)(r, t)

]†
. (2.4)

The total electromagnetic field consisting of both positive and negative frequency parts

is then

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t). (2.5)

Instead of explicitly writing the coherence function in terms of space and time, one can,

assuming the case of an one-dimensional transmission line, express spatial differences

x2 − x1 as temporal differences by relating τ = (x2 − x1)/c and hence write

g(1)(x1, x2) = g(1)(τ). (2.6)

Second-order coherence

The second-order coherence function (which is also sometimes denoted as degree of

second-order coherence) is given by [4], [9]

g(2)(τ) =
〈Ê(−)(t)E(−)(t + τ)Ê(+)(t + τ)Ê(+)(t)〉
〈Ê(−)(t)Ê(+)(t)〉 〈Ê(−)(t + τ)Ê(+)(t + τ)〉

, (2.7)

where τ = t2 − t1 is the time difference between two photon counts. For single-mode

planar fields, i.e.

Ê(+)(t) = i

√
~ωk

2ε0V
âei(kr−ωt) (2.8)

one can write Eq. (2.7) in terms of ladder operators and gets [4]:

g(2)(τ) =
〈â†â†ââ〉
〈â†â〉2

=
〈n(n− 1)〉

〈n〉2
(2.9)

= 1 +
〈(∆n)2〉 − 〈n〉

〈n〉2
, (2.10)

with 〈n〉 the average number of photons and 〈(∆n)2〉 the variance.

As statistical properties vary from field to field, one needs to distinguish between the

appropriate correlation function according for each of those.
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2.1 Correlation functions

2.1.1 Second order correlation function for coherent fields

Considering a coherent field, one can see by writing the coherent states |α〉 in a fock-

state basis [10]

|α〉 = e−
|α|2
2

∞∑
n=0

αn

√
n!
|n〉 = e−

|α|2
2 eαâ† |0〉 , (2.11)

that these types of fields have Poissonian photon number statistics

P (n) = e−〈n〉
〈n〉n

n!
. (2.12)

For Poissionian statistics the variance equals the mean, i.e in terms of mean photon

numbers

〈n〉 = 〈(∆n)2〉 (2.13)

by combining equations (2.10) and (2.13) one obtains following important expression

for coherent fields:

g(2)(0) = g(2)(τ) = 1. (2.14)

This is an important result, as this expression is not time dependent.

2.1.2 Correlation function for thermal fields

For thermal fields, i.e. black body radiation, the mean photon number (Bose-Einstein-

Distribution) is given by:

〈nT 〉 =
1

e~ω/kT − 1
, (2.15)

with k the Boltzmann constant, T temperature, ~ the reduced Planck’s constant and

ω the frequency. The correlation function of a thermal field is then determined by

g(2)(τ) = 1 +
∣∣g(1)(τ)

∣∣2 . (2.16)

It can be found in [11], [12], that the expression of temporal coherence is given by

γ(0, τ) =
90

π4
ζ(4, 1 + kT/~ iτ), (2.17)

where ζ is the Riemann zeta function normalized by the prefactor 90/π4 to 1. By

definition of γ [11]

γ(x1, x2) =
〈Ê(−)(x1)Ê

(+)(x2)〉√
〈Ê(−)(x1)Ê(+)(x1)〉 〈Ê(−)(x2)Ê(+)(x2)〉

, (2.18)

7



2 Theory

one can immediately see that temporal coherence is exactly the same as first-order

coherence introduced in Eq. (2.2),

γ(x1, x2) = g(1)(x1, x2), (2.19)

and with Eq. (2.16) and (2.17) it follows:

g(2)(τ) = 1 +

∣∣∣∣90

π4
ζ(4, 1 + kT/~ iτ)

∣∣∣∣2 . (2.20)

2.1.3 Mixtures of thermal and coherent fields

For mixtures of thermal and coherent radiation important statistical properties of the

field can be found [13], [14]. The total mean photon number 〈n〉 is given by

〈n〉 = 〈nC〉+ 〈nT 〉 , (2.21)

i.e. the sum of the mean contributions of coherent 〈nC〉 and thermal radiation 〈nT 〉.
Further, one can find the variance of the total photon number equals

〈(∆n)2〉 = 2 〈nC〉 〈nT 〉+ 〈nC〉+ 〈nT 〉2 + 〈nT 〉 . (2.22)

By substituting in Eq. (2.21) and (2.22) into Eq. (2.10)

g(2)(0) = 1 +
〈(∆n)2〉 − 〈n〉

〈n〉2
(2.23)

= 1 +
2 〈nC〉 〈nT 〉+ 〈nC〉+ 〈nT 〉2 + 〈nT 〉 − (〈nC〉+ 〈nT 〉)

(〈nC〉+ 〈nT 〉)2 , (2.24)

one finally obtains following expression for the correlation function:

g(2)(0) = 1 +
2 〈nC〉 〈nT 〉+ 〈nT 〉2

(〈nC〉+ 〈nT 〉)2 . (2.25)

2.1.4 Cross- and Autocorrelation function

Proceeding from quantum mechanical definitions of coherence functions one arrives at

the expressions for auto- and cross correlations. The cross correlation function describes

the correlation between two signals A2
1 and A2

2 given by

g(2)(τ) =
〈A2

1(t)A
2
2(t + τ)〉

〈A2
1(t)〉 〈A2

2(t)〉
, (2.26)
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2.1 Correlation functions

where A2
i are the squared amplitudes. To measure the correlation of one signal (i.e. one

output line) with itself, one can write the autocorrelation function as

g(2)(τ) =
〈A2

1,2(t)A
2
1,2(t + τ)〉

〈A2
1,2(t)〉

2 , (2.27)

which has been obtained directly from Eq. (2.26).

9



2 Theory

10



3 Correlation Function Measurements

3.1 Experimental Setup

Previous work [2], [1] has been done on analyzing the behavior of beam splitter devices

at the temperature of 4.2 K. This was realized by using a dipstick that was clamped at

the neck of dewar filled with liquid helium. By releasing an O-ring clamp, the dipstick

could be lowered and the device cooled without much effort. However, this temperature

is too high to perform measurements introduced in chapter 2. Temperatures in the range

of 4.2 K add too much thermal radiation to successfully perform autocorrelation or cross

correlation measurements. Amplifier thermal noise contributions (see chapter 3.2.2) in

the same temperature ranges could not be distinguished from the background fields. In

addition, for incorporating superconducting qubits as single photon source, one needs

to ensure that thermal fluctuations kT range below the energies corresponding to qubit

transition frequencies ω ≈ 6 GHz, i.e. kT � ~ω [6]. This can be achieved by using

a dilution refrigerator (VeriCold), in which temperatures can reach below 15 mK. A

dilution fridge is cooled by diluting helium isotopes 3He and 4He and dissipating energy

from the system [15]. The cryogenic wiring is schematically depicted in Fig. 3.1.

Microwave signals that are sent into the refrigerator are created at room temperature

with a microwave generator and connected via semi rigid coaxial cables to the top

input of the cryostat. After being attenuated at different temperature stages of the

cryostat, the signal interacts with the on-chip beam splitter fixed in a sample mount

at cryogenic temperatures of ≈ 15 mK and is split into two outgoing signals of about

equal amplitude. The output microwave then passes through two circulators, to prevent

thermal noise from the subsequent low-temperature amplifier from traveling back to the

sample. After a second warm amplification the RF signal is mixed with a local oscillator

(LO) and is downconverted to an IF frequency of 10 MHz. To ensure a well defined

phase difference between both outputs and the LO and avoid the necessity of operating

a second LO, the LO was divided into two signals with a splitter and then linked to both

IQ-mixers. Due to the additional splitter, the LO needs to be operated at 4 dB higher

power, i.e. in our measurements at 16 dBm. A third amplification at the IF follows

and after a low-pass filter with bandwidth of 35 MHz the signal is digitally recorded on

a PC using a data acquisition card. LabView program CleanSweep enables to analyze

measured data and remotely control all room-temperature microwave electronics. For

11
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Figure 3.1: Sketch of VeriCold cryostat experimental setup. See text for detailed description.
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3.1 Experimental Setup

a detailed discussion of the cryogenic measurement setup, see also [16].

3.1.1 Implementation of Correlation function routines in LabView

In order to carry out simultaneous cross- and autocorrelation measurements, Clean-

Sweep had to be adapted slightly. After the LabView program was made capable of

recording both channels, I created a sub-VI that handles measured data. For τ = 0 the

sub-VI calculates the mean of an incoming signal:

〈A2
1,2〉 =

1

N

N∑
t=1

A2
1,2(t), (3.1)

with A2
i the measured squared amplitude in Volts and N the number of data points

acquired. The autocorrelation is given by

g(2)(0) =
1
N

∑N
t=1 A4

1(t)(
1
N

∑N
t=1 A2

1(t)
)2 , (3.2)

with Ai and N as above. The cross correlation then reads:

g(2)(0) =
1
N

∑N
t=1 A2

1(t)A
2
2(t)

1
N

∑N
t=1 A2

1(t)
1
N

∑N
t=1 A2

2(t)
. (3.3)

In the time dependent case, i.e. for time-resolved correlation functions, I took pre-

built LabView sub-VIs called AutoCorrelations and CrossCorrelations. The sub-VI’s

algorithms correspond to following equations:

g(2)(τ) =

1
N−|τ |

∑N
t=1 A2

1(t)A
2
1(t + τ)(

1
N

∑N
t=1 A2

1(t)
)2 (3.4)

for the time-resolved autocorrelation. Factor 1/(N−|τ |) corresponds to a normalization

correction for the offsets. In software, this can be taken into account by choosing setting

unbiased in the sub-VI. One must consider that the difference N − |τ | makes sense as

N is the number of data points acquired in a certain time. By knowing the time

separation between each data point, one can express the time difference τ as an offset

corresponding to a certain number of measuring points.

The time-resolved cross correlation yields:

g(2)(τ) =

1
N−|τ |

∑N
t=1 A2

1(t)A
2
2(t + τ)

1
N

∑N
t=1 A2

1(t)
1
N

∑N
t=1 A2

2(t)
(3.5)
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3 Correlation Function Measurements

In both equations above the enumerator is calculated by the corresponding sub-VIs

introduced in the last paragraph.

As one can see directly, these expressions match the definitions given in chapter 2.

3.2 Non-time resolved experiments

The first experiments that were done with the VeriCold setup described in section 3.1

were non-time resolved. The behavior of the beam splitter under cryogenic conditions

had to be analyzed and compared with previous dipstick measurements.

3.2.1 Beam splitter measurements at 20 mK

After the beam splitter device (sample Z2) had been cooled down to 20 mK, the fridge

was connected to the measurement setup according to Fig. 3.1 so that both beam

splitter output lines could be read out separately and, for later measurements, also

simultaneously. All measurements were performed with the LabView data acquisition

program CleanSweep, that allowed to control microwave generators (i.e RF, LO), signal

generators (AWG) and trigger sources remotely. In Fig. 3.2 a) a beam splitter analysis at

cryogenic temperatures is depicted and compared with a previous dipstick measurement

(Fig. 3.2 b)). The VeriCold measurement was performed sweeping the frequency in a

range from 3 to 9 GHz.

To compare VeriCold to dipstick measurements, amplitudes of the cryostat measure-

ments were normalized to 0.5 with respect to the working frequency of 6.5 GHz. It

can be seen in Fig. 3.2 b) that in the dipstick measurement the signals do not match

perfectly at half power, corresponding to a slight asymmetric splitting. These results

have already been seen before and were discussed in [1], [2]. In the VeriCold setup, see

Fig. 3.2 a), the deviation seems to be reduced. However, it is highly likely that this is by

virtue of unequal amplification of the output channels. Subsequent oscillatory features

in Fig. 3.2 a) are due to the strong frequency dependence of the warm amplifier chain

(i.e. downconversion board).

3.2.2 Auto- and cross correlations and mean amplitude squared

The measurements described in the previous section have shown it can be assumed that

the beam splitter works reliable enough in the cryogenic setup to continuing further

experiments. Therefore, an experiment recording the Auto- and cross correlations (see

chapter 2) of beam splitter output channels could was set up. The amplitude of the

14
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Figure 3.2: Comparison of beam splitter measurement inside a) the cryostat at 20 mK and b) inside
the dipstick at 4.2 K.

signal going into the data acquisition card on the measuring PC was squared and second

order auto- and cross correlations were calculated according to Eq. (2.26) and (2.27).

The Auto- and cross correlation measurements, see Fig. 3.3 were recorded with a co-

herent RF input at a fixed frequency of 6.5 GHz (i.e. the working frequency of the

beam splitter) and swept over different RF input powers. The LO was set to 6.51 GHz,

corresponding to a heterodyne intermediate frequency (IF) of 10 MHz. By virtue of the

measurement setup, one has to bear in mind that cold amplifiers at a temperature stage

of 1.4 K give rise to noise and produce a quasi thermal field characterized by a certain

noise temperature. Therefore, one has to consider that the actual output corresponds

to a mixture between a thermal and a coherent field (also see chapter 2.1.3), rather

than to just the coherent field alone. Hence, the output power (or amplitude squared)

in dependence on the input RF power was recorded as this illustrates the mixture of

thermal and coherent fields at different powers nicely.

Autocorrelation

The autocorrelation function of the two output channels (i.e. two split output lines) is

displayed in Fig. 3.3 b). At low powers of the coherent tone, thermal field contributions

are much larger than the ones of the coherent field. Thus, coherent fields can be

15



3 Correlation Function Measurements

neglected:

g(2)(0)
〈nC〉→0−−−−→ 2, (3.6)

which relates excactly to the measurement. For increasing powers, a coherent contri-

bution can be detected and

g(2)(0)
〈nC〉→∞−−−−−→ 1, (3.7)

which is also true for this measurement. For power ranges in between these limits,

one can apply Eq. (2.25) directly. As the mean number of coherent photons 〈nC〉 is

proportional to the input power P and the mean number of thermal photons 〈nT 〉 is

proportional to the Bose-Einstein distribution (c.f. Eq. (2.15)) one can fit the data with

g(2)(0) = 1 +
2A2β + β2

(β + A2)2
, (3.8)

which can directly be obtained from Eq. (2.25). A2 and β (both in units of V 2) are

including the fit parameters γ and T (fitted temperature) and are given by:

β =
Famp R ~ω dν

e~ω/kT − 1
, (3.9)

A2 = γ P R (3.10)

with k the Boltzmann constant, ~ the reduced Planck’s constant, ω = 2πν the frequency,

dν = 35 MHz the bandwidth, R = 50 Ω the resistance and P the input power in W.

The conversion between input power in W and voltage squared (i.e. amplitude squared)

is simply given by:

P =
V 2

R
. (3.11)

The factor Famp = 107.8 ± 1.5 dB ≈ 6 ± 2 · 1010 is needed to take the amplification

inside the VeriCold setup into account and was estimated from previous calibration

measurements. Based on the estimated amplification factor Famp, fitting the function

gives rise to a temperature of T = 5.3 ± 2.2 K1 and a factor γ = 5700 = 38 dB. γ

describes the total amplification and attenuation happening inside the measurement

setup, therefore already including the factor Famp defined before:

γ = Famp · Fatt. (3.12)

With a fixed Famp one can then easily calculate the attenuation Fatt = γ/Famp ≈ −70

dB, which agrees with estimates based on warm calibrations of the cabling setup.

1All fit parameters given in this context illustrate the mean of two fits that have been carried out on
both channels depicted in Fig. 3.3 seperately.
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3.3 Time resolved experiments

Mean amplitude squared

As mentioned before, one can also acquire the mean squared amplitudes (in units of

V 2) of both channels, see Fig. 3.3 a). As the output power should be proportional to

the input, one can easily fit following line to the measurement:

〈A2〉 = β + A2, (3.13)

with β and A2 as above. Assuming an amplification factor of Famp = 107.8 ± 1.5 dB

as before, one gets a fitted temperature of T = 6.0 ± 2.4 K.

Both experiments showed amplification noise temperatures that agree quite well with

datasheet values of T ≈ 4 K. However, one has to be aware of an uncertainty in the cold

amplification of the setup, as it could only be calibrated at room temperature leading

to differences in the behavior of cold amplifiers as well as attenuation of microwave

coaxial cables.

Cross correlation

Measuring cross correlations, one does not have to consider a mixture of thermal and

coherent field any more. Since the two output channels are amplified with independent

amplifiers, their noise is uncorrelated, and can be averaged out. Neglecting thermal

contributions, one can assume a fully coherent field with a constant cross correlation

value g(2)(τ) = 1. This is consistent with our measurements, see Fig. 3.3 c).

In fact there is a little thermal contribution due to the radiation background in the

sample mount corresponding to temperatures of ≈ 20 mK. However, features according

to this temperature could not be resolved. Fig. 3.4 illustrates a theoretical cross correla-

tion function with thermal contributions of different temperatures. For a thermal field

with temperature of 4 K (i.e. like in the previous autocorrelation function measurements

for the amplifier noise), a curve can be measured easily. At lower temperatures, i.e. 0.02

K = 20 mK corresponding to the thermal background, the slope of the theoretical curve

at zero power is too narrow to be detected.

3.3 Time resolved experiments

The next important step was to record both time dependent Auto- and cross correlations

as already introduced in chapter 2. To record corresponding data, one could use the

same setup as in the non time-depedent case but had to modify LabView program

CleanSweep slightly. This was accomplished by creating an additional sub-VI according

to the equations presented in section 3.1.1.
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Figure 3.3: Measured a) mean square amplitude and b) τ = 0 autocorrelation and c) cross correlation
function of channels 1 and 2 inside the VeriCold. Recorded data is plotted as points, a theory fit is
displayed by solid lines.
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Figure 3.4: Plot shows the theoretical behavior of a simulated cross correlation function with respect
to an additional thermal field at different temperatures. The curve for T = 0.02 K, corresponding to
background thermal radiation in the cryostat, could not be resolved in our measurements.

Time resolved Autocorrelation

In the case of the autocorrelation function one has once again to consider a mixture of

a coherent and a thermal field caused by the amplifiers. Figures 3.5 a) and b) display

measurement data and the theoretical curve. Theory predicts the autocorrelation func-

tion of mixtures of thermal and coherent fields to behave like Eq. (2.20), i.e. a Riemann

zeta function. This function has a strong dependence on temperature T and gets very

narrow for temperatures of about 6 K (i.e. a corresponding full width at half maximum

of 10−12 s). Therefore, it was impossible to resolve this feature within the limits of our

experimental setup. Therefore, in Fig. 3.5 b) a theoretical plot of the function proposed

before rather than a real data fit is shown. For smaller temperatures, i.e. in the range

of 0.1 K, the full width at half maximum of the Riemann zeta function increases to

10−10 s, which is also too narrow to resolve in our current setup. In Fig. 3.5 b), notice

that as the range had to be cut off to display the function, only one data point is left

at τ = 0.

Time resolved cross correlation functions

As seen before, when measuring the cross correlation of the two output ports of the

beam splitter, the thermal field created at the amplifier cancels out. Therefore one

expects the same behavior as for the non time-resolved case, i.e. a constant value of 1.

This is exactly what can be seen in Fig. 3.5 c). The small thermal background field

that should exist would be difficult to resolve because of the considerations discussed

in the previous section.
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Figure 3.5: a) and b) Measurements of time dependent autocorrelation function for mixtures of thermal
and coherent field at channels 1 and 2. In b) the theory autocorrelation function is plotted for different
temperatures. c) Measured time dependent cross correlation (points) and a theoretical fit (solid line).
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3.4 Generation of artifical thermal noise

3.4 Generation of artifical thermal noise

After measuring basic time-dependent and time-independent correlations functions of

the microwave beam splitter one could proceed to approach more advanced experiments.

To see how different types of input fields affect the correlation functions, we planned to

apply a thermal field to one of the input ports of the beam splitter inside the cryostat.

As this basically requires some changes to the experimental setup we decided to create

artificial quasi thermal radiation based on a white noise signal with a bandwith of 500

MHz centered around the operation frequency of 6.5 GHz. This technique has been used

previously [17], [18] to perform circuit QED experiments at elevated temperatures. In

Fig. 3.1 the thermal noise setup is sketched. Before mixing the signal with an local

oscillator (LO) running at 6.5 GHz with 20 dBm, the white noise is amplified by 25

dB. To control the power of the white noise signal going into the setup, i.e. to vary the

effective temperature of the artificial thermal soure, a tunable attenuator is used. The

subsequent parts of the setup are the same as used in the previous experiments. The

main RF source of the experiment was turned off for thermal noise runs.

3.4.1 Cross correlation function for thermal inputs

Again, the added uncorrelated noise of the microwave amplifiers inside the cryostat

cancels out when measuring the cross correlation functions. Therefore the measurement

should directly show changes in the type of field applied to the input port. Fig. 3.6 shows

the main result of this experiment. In this measurement the attenuation was swept from

30 to 0 dB with a step of 1 dB. The conversion between input power (i.e. attenuation)

and artificial blackbody temperature can be done by using the Bose-Einstein factor

(Eq. (2.15)) and a calibration carried out in [18]. In this work it was found that one

photon in the cryostat relates to an attenuation of ≈ 33 dB. However, not truely the

same experiment as in [18] was performed. This value might deviate to some amount,

as it refers to one photon inside the resonator cavity rather than the beam splitter.

Manipulating Eq. (2.15) one can write the noise temperature Tnoise as a function of the

mean photon number 〈nT 〉:

Tnoise(P ) =
~ω

k

1

log
(

1
〈nT 〉

+ 1
) . (3.14)

As for 〈nT 〉 = 1 the attenuation is ≈ 33 dB, it follows

〈nT 〉 (P ) =
10

33
10

10
P
10

= 10(33−P )/10, (3.15)
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Figure 3.6: Plot illustrates measured cross correlation function with applied artificial thermal field.
Attenuation and corresponding temperature are plotted versus the correlation function.

where the conversion 10
P
10 is needed to express the logarithmic dB in a linear scaling.

Hence,

Tnoise(P ) =
~ω

k

1

log
(

1
10(33−P )/10 + 1

) . (3.16)

Recording the correlation function at τ = 0, the measurement should yield (see Eq. (2.20)):

g(2)(0) = 1 +

∣∣∣∣90

π4
ζ(4, 1)

∣∣∣∣2 = 2. (3.17)

However, as Fig. 3.6 shows, this is not true. Rather than being flat at g(2)(0) = 2 and

therefore a real thermal field, the correlation function decreases from 1.5 to 1 in a similiar

manner as seen before in the discussion of the autocorrelation function of a mixture

between a thermal and coherent field (Fig. 3.3 b)). The coherent field contribution

could arise from a leakage when mixing AWG with LO leading to a coherent peak a the

LO carrier frequency. Unfortunately it was not possible to fit a function like introduced

in Eq. (3.8) to the recorded data with sensible physical constraints. Also, for zero

attenuation (i.e. a thermal field with temperature of 623 K), the correlation function

stays at 1.5, which does not correspond to theory either. It is likely that the cause

of this issue originates from timing deviations of the recorded channels. In theory the

correlation function of thermal fields drops rapidly from 2 to 1 (see Fig. 3.5 b)). A

very short time delay on one of both channels that could arise even from different cable

lengths and therefore already lead to values deviating from theory.

Moreover, it is not certain whether creating blackbody radiation artificially gives rise to

the same properties as a real blackbody emitter, i.e. a resistance at a fixed temperature.
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3.4 Generation of artifical thermal noise

In future experiments the reliability of the generated thermal field needs to be checked

and compared to other possibilities for its generation.
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4 Conclusion and Outlook

In this thesis the correlation functions of the two output signals of a microwave beam

splitter have been measured. The experiments were done with superconducting devices

inside a dilution refrigerator (VeriCold) at 20 mK. Both Auto- and cross correlation

have been determined for different types of input fields. Measurements with coherent

input fields or mixtures between coherent and thermal fields agreed with theory. An

amplifier noise temperature of about 5 K was found, which is close to the specifications.

Within the time resolved autocorrelation measurements, the detection resolution was

limited and therefore not all theoretical characteristics could be tested. An artificial

quasi thermal field based on white noise was generated with an arbitrary waveform

generator. The measured cross correlations do not correspond to theory adequately.

In future experiments one needs to verify whether the generation of quasi thermal ra-

diation with an AWG suffices to simulate a blackbody emitter. Temperature controlled

resistances could instead be applied inside the cryostat to generate real black body radi-

ation. Incorporating single photon sources, e.g. by using sideband transitions in qubits

coupled to a resonator, one could also record the correlation functions and antibunching

of a single microwave photon source in the microwave domain.
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