Implementing gates in quantum dot spin qubits

Tomáš Bzdušek QSIT student presentation 28th november 2011

Outline

- Reminder
 - What is a (double) quantum dot?
 - What was discussed on the lecture?
- The talk itself
 - Energy diagram of DQD.
 - Dephasing of a qubit
 - SWAP operation
 - Spin Echo

What was discussed on the lecture?

(a rather long reminder)

Double quantum dot

Lecture outline

Initialization 1-electron, low T, high B_0 $H_0 \sim \sum \omega_i \ \sigma_{zi}$

Read-out convert spin to charge

then measure charge

ESR pulsed microwave magnetic field

 $H_{RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma_{xi}$

SWAP exchange interaction

 $H_{J} \sim \sum J_{ij}(t) \ \sigma_{i} \cdot \sigma_{j}$

Coherence long relaxation time T_1 long coherence time T_2

Initialization 1-electron, low T, high B_0 $H_0 \sim \sum \omega_i \ \sigma_{zi}$

Read-out convert spin to charge then measure charge

Read-out done using quantum point contact (QPC)

Lecture overview

1-electron, low T, high B_0 Initialization

 $H_0 \sim \sum \omega_i \sigma_{zi}$

Read-out convert spin to charge

then measure charge

pulsed microwave magnetic field

 $H_{RF} \sim \sum A_i(t) \cos(\omega_i t) \sigma_{xi}$

ESR

 $H_{J} \sim \sum J_{ii}(t) \sigma_{i} \cdot \sigma_{i}$

Coherence long relaxation time T_1

long coherence time T_2

Energy Diagram of a Double Quantum Dot

It brings some general ideas.

Spin-less particle in double well

Spin-less particle in double well

Energy diagram of a double quantum dot (1)

Energy diagram of a double quantum dot (2)

• Weak coupling between (0,2)S and (1,1)T₊.

Energy diagram of a double quantum dot (3)

- In this region, the state effectively described in $S T_0$ subspace, $T_0 = T_0 + T_0 = T_0$
- Effective hamiltonian: $\widehat{H}=\begin{pmatrix}J(\varepsilon) & \Delta B_{\mathrm{nucl.}} \\ \Delta B_{\mathrm{nucl.}} & 0\end{pmatrix}$

Energy diagram of a double quantum dot (3)

▶ Far left = deep in (1,1) region, $J(\varepsilon) \approx 0$. → Eigenstates of subspace are $|\uparrow\downarrow\rangle$ and $|\downarrow\uparrow\rangle$!

The logical qubit

$$\widehat{H} = \begin{pmatrix} J(\varepsilon) & \Delta B_{\text{nucl.}} \\ \Delta B_{\text{nucl.}} & 0 \end{pmatrix}$$

Qubit manipulation

Qubit manipulation

Dephasing Time

Experiment #1

Measuring dephasing time

Dephasing time - Results

Spin Echo

Experiment #2

Spin Echo: State manipulation

Spin Echo: Theory vs. Experiment

SWAP Operation

Experiment #3

SWAP operation

SWAP operation

SWAP operation

SWAP: Theory vs. Experiment

Summary

Summary

- ▶ Read-out fidelity ≈ 86 %
- ▶ Dephasing time $\approx 10 \text{ ns}$
- Echo-coherence time $\approx 1.2 \ \mu s$

Thank you for attention! It's time for your questions.

Used literature

- Hanson, R; Kouwenhoven, LP; Petta, JR; et al.
 - Spins in few-electron quantum dots
 - Reviews of Modern Physics 79, 1217 (2007)
- Petta, JR; Johnson, AC; Taylor, JM; et al.
 - Coherent manipulation of coupled electron spins in semiconductor quantum dots
 - Science 309, 2180 (2005)
- Nowack, K. C.; Shafiei, M.; Laforest, M.; et al.
 - Single-Shot Correlations and Two-Qubit Gate of Solid-State Spins
 - Science 333, 1269 (2011)
- Special thanks to Arkady Fedorov for his willing advice.

Final note

Hello, whoever you are!

If you got this far, please send me an email to tomas(dot)bzdusek(at)gmail(dot)com. I am really curious how many people finds this presentation useful, say, during 5 years after my talk.

However, considering ammount of words used in the slides, I think they won't help you much, if you did not attend my talk.

I wish you good luck anyway, whatever reason has led you here. ©

(ancient words of the author, 5th December 2011)