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14-Qubit Entanglement: Creation and Coherence
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We report the creation of Greenberger-Horne-Zeilinger states with up to 14 qubits. By investigating the
coherence of up to 8 ions over time, we observe a decay proportional to the square of the number of qubits.
The observed decay agrees with a theoretical model which assumes a system affected by correlated,
Gaussian phase noise. This model holds for the majority of current experimental systems developed

towards quantum computation and quantum metrology.
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Creation of a six-atom ‘Schrodinger cat’ state

D. Leibfried’, E. Knill", S. Seidelin’, J. Britton’, R. B. Blakestad’, J. Chiaverini't, D. B. Hume', W. M. Itano’,
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Among the classes of highly entangled states of multiple quantum
systems, the so-called ‘Schrédinger cat’ states are particularly
useful. Cat states are equal superpositions of two maximally
different quantum states. They are a fundamental resource in
fault-tolerant quantum computing'~ and quantum communi-
cation, where they can enable protocols such as open-destination
teleportation® and secret sharing”. They play a role in fundamental
tests of quantum mec:l'uu_lics6 and enable improved signal-to-noise

S.11y=21%t)and §,||)=—2| 1) (for simplicity we set h=1). We

define | T, N) = 1) 1)1 Thyand 11, Ny=[Ih] Dol D

In this notation, prototypical cat states of N qubits can be written
as:
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To generate such states we initially prepare the ions in state | | , N)

and then apply the following unitary operation to transform the

[N Cat) =



Cat states

e Cat states: ,equal superpositions of two
maximally different states”.

* For more than two qubits (subsystems):

GHZ-states (Greenberger-Horne-Zeilinger
W)=1/v2 (|0...0)+|1...1))

here: |N Cat)=1/V2 (| ... ™) +e®| {...1))
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String of ions

in a linear Paul trap

6 Qubits 14 Qubits

SBet*ions 40Ca*ions



Ingredients

* atomic ions
* confined in electromagnetic traps
* manipulated with laser beams -> pumping

* Centre-of-mass (COM) frequencies?

* Axial COM f. between wqy,,/2m = 2.6MHz and 3.4MHz
* Radial COM f. ~ 8 MHz

* Operations U, using two-photon stimulated
Raman transitions

* Laser Pulses with a certain freq., duration, intensity &
phase; same for all qubits.



Preparation of entangled state

» Start with |{,N)
* Apply unitary operation:

U\ =(explirn/2 J Jexpli§n/2 J.])(exp[irn/2 J.2])(exp[irn/2 J.])
with €&=1 if N is odd and ¢=0 otherwise

* Goal: [N Cat)=1/V2 (| P..™M)+e®| L ...1))
* Measure Entanglement!



We need a measure

Fidelity: F = | (W |N Cat) |2
Useful:

F= 1/2(P’]\N+P\1,N)+‘ C\l,N;’]\N‘
That is not all there is:

for N>2 there is no single measure that
guantifies entanglement!

Only comparable if |®) -- via LOCC --> | W)



Measure (cont.)

Witness Operator: W =1 —2|N Cat){N Cat|

(W) =1-2 * Fidelity
If (W)< 0 significantly = entanglement

then states can be purified by LOCC



Measure (cont.)

e ,depolarization’ method: Using LOCC, density
matrix gets transformed, then:

N-Particle entanglement if:
2 ‘ C\I/N;’I\N ‘ > man(Pj+Pj,)

* The most important information resides in the
magnitude of coherence C \.qq



Results

From amplitude of parity-oscillations:

Crata
Cisits

Cie1e

>0.349(2) /
>0.264(2) /
>0.210(2) X

from poissonian fits:

4Cat 2 0. 76(1)
Fe a2 0.60(2)
.. > 0.509(4)

(W,><0.51(2)
(W< 0.20(2)
(W,.><0.018(8)
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v/
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Results
(W,><0.018(8)

Use ‘depolarization’ method:

2| C iy | > max(P+P;)

knowing: maXJ(PJ'l'PJ‘) <2 maX(PJ)

For the |6 Cat ) state:
C e8] 2 0.210(2)

> maxj(P“- |iep2345)=0.119(9) /



Take Home Message

* Entanglement of N particles:
(theoretical) problem to quantify if N>2
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EXPERIMENT DESCRIPTION

N 4°Ca™ Ions

‘ ‘ ‘ ‘00000‘
| 2 3 4

Dsja(m = ~1/2) = [0)

Sl/g(m =—1/2) = 1)




EXPERIMENT DESCRIPTION

Scattering light at 397 nm

optical pumpmg
51/2 — P1/2



COHERANCE AS A FUNTION

UUUUU
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T //ﬂ\y/ ~ After the GHZ state Is generated the qubit are

rotated by

l The amplitude of the oscillations Is the coherence




DECOHERENCE AS A

FUNCTION

| |
(a)
(] one qubit 1

four qubits %
six qubits

Waiting Time (ms)

Coherence time decreases
and error increases as
number If Q-bit increases

e(N) = N*

OF TIME

time delay I1s introduce

between characterization

and creation of state

|||||||
11111111
Number of Qubits



MOST RELEVANT RESULTS

For | Obit with a coherenace time of 95 ms Is found

VWhen using a base
00001111) 4 |11110000)

a 324 ms coherence time Is
obtained, why??



THE MODEL FOR A SINGLE
QBIT

H = _o.w+ Ek: bl by + Ek: 0. (grb! + gibi)

U(t) = explos 5 (L& (1) — brgi (1))

k

0,10y = —1[0) | — ciwnt

o.|1) = 1[1)

No energy exchange or spin
flip



Displacement operator in
Quantum optics

D(a) = exp{aa’ — a*a}
D()|0) = |

D(1/20,&;) = exp{1/20,&:b" — 1/20,£5b)

U(t)|0) ® |¥) = 11, D(—1/2& (1))



W) = (cpl0) + cl|1)) ® |Og) Entanglement

U(t)[¥) = col0)| — 1/28x (1)) + c1|1)| + 1/2&x(2))

Generalization to 2 Qbits
Hipe =Y 0%(gibl, + gibe) + o2(grby + g5 br)
k

U(t) = D(1/202€;(t) + 1/2026;(t))



|<I)(_)> = (c10|1a,0p) + c01|04, 1p)) ® |0f)

D)) = (c00|0q, 06) + c11|1a, 16)) @ |Ok)

States with 2 different Qbit configuration
couple differently to the filed

U(1)[@™)) = (co0l0a, 0)| = 1/2(&% + €)) + 1l la, 16)[1/2(€5 + &)

U1)[@) = (cr0l1a, 05)| + 1/2(&8 — &) + co1|0a, 1o)| — 1/2(&5 = &7))

f & =& |27) Doesn't couple to the field



general pros and cons regarding
QC with iontraps

e electron and nuclear spins (Spin’: particles)
inherently only have two states (good!)
* problem:

the center of mass oscillations (phonons)
have short coherence time

* possible Solution: strong interaction through
chemical bonds -> NMR
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