Multiparticle Entanglement

Andrés Vargas Lugo Cantú Andreas Wanner

(our names are entangled?)

les financiers

- US National Security Agency (NSA)
- Advanced Research and Development Activity (ARDA)
- Department of Defence Multidisciplinary University Research Initiative (MURI)
- NIST

les financiers

- Austrian Science Fund (FWF)
- European Commission (AQUTE, STREP project MICROTRAP)
- IARPA, the CIFAR JFA, NSERC
- Institut für Quanteninformation GmbH
- This material is based upon work supported in part by the U. S. Army Research Office.

INSIGHT REVIEW

NATURE Vol 453 19 June 2008 doi:

Entangled states of trapped atomic ions

Rainer Blatt^{1,2} & David Wineland³

Der Würdigungspreis im Bereich Naturwissenschaft ging an den Innsbrucker Physiker Rainer **Blatt**

David **Wineland**, a member of the NIST Ion Storage Group

14-Qubit Entanglement: Creation and Coherence

Thomas Monz,¹ Philipp Schindler,¹ Julio T. Barreiro,¹ Michael Chwalla,¹ Daniel Nigg,¹ William A. Coish,^{2,3} Maximilian Harlander,¹ Wolfgang Hänsel,⁴ Markus Hennrich,^{1,*} and Rainer Blatt^{1,4}
¹Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
²Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
³Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
⁴Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria (Received 30 September 2010; published 31 March 2011)

We report the creation of Greenberger-Horne-Zeilinger states with up to 14 qubits. By investigating the coherence of up to 8 ions over time, we observe a decay proportional to the square of the number of qubits. The observed decay agrees with a theoretical model which assumes a system affected by correlated, Gaussian phase noise. This model holds for the majority of current experimental systems developed towards quantum computation and quantum metrology.

Vol 438|1 December 2005|doi:10.1038/nature04251

LETTERS

nature

Creation of a six-atom 'Schrödinger cat' state

D. Leibfried¹, E. Knill¹, S. Seidelin¹, J. Britton¹, R. B. Blakestad¹, J. Chiaverini¹[†], D. B. Hume¹, W. M. Itano¹, J. D. Jost¹, C. Langer¹, R. Ozeri¹, R. Reichle¹ & D. J. Wineland¹

Among the classes of highly entangled states of multiple quantum systems, the so-called 'Schrödinger cat' states are particularly useful. Cat states are equal superpositions of two maximally different quantum states. They are a fundamental resource in fault-tolerant quantum computing¹⁻³ and quantum communication, where they can enable protocols such as open-destination teleportation⁴ and secret sharing⁵. They play a role in fundamental tests of quantum mechanics⁶ and enable improved signal-to-noise

 $\tilde{S}_{z}|\uparrow\rangle = \frac{1}{2}|\uparrow\rangle$ and $\tilde{S}_{z}|\downarrow\rangle = -\frac{1}{2}|\downarrow\rangle$ (for simplicity we set $\hbar = 1$). We define $|\uparrow\rangle$, $N\rangle \equiv |\uparrow\rangle_{1}|\uparrow\rangle_{2}...|\uparrow\rangle_{N}$ and $|\downarrow\rangle$, $N\rangle \equiv |\downarrow\rangle_{1}|\downarrow\rangle_{2}...|\downarrow\rangle_{N}$. In this notation, prototypical cat states of N qubits can be written as:

$$|N \operatorname{Cat}\rangle = \frac{1}{\sqrt{2}} (|\uparrow, N\rangle + e^{i\theta}|\downarrow, N\rangle) \tag{1}$$

To generate such states we initially prepare the ions in state $|\downarrow, N\rangle$ and then apply the following unitary operation to transform the

Cat states

- Cat states: "equal superpositions of two maximally different states".
- For more than two qubits (subsystems):

GHZ-states (Greenberger-Horne-Zeilinger $|\Psi\rangle=1/\sqrt{2} (|0...0\rangle+|1...1\rangle)$

here: $|N \text{ Cat}\rangle = 1/\sqrt{2} (|\uparrow ... \uparrow\rangle + e^{i\theta} |\downarrow ... \downarrow\rangle)$

lon traps

String of ions

6 Qubits

•

⁹Be⁺ions

14 Qubits

⁴⁰Ca⁺ ions

Ingredients

- atomic ions
 - confined in electromagnetic traps
 - manipulated with laser beams -> pumping
- Centre-of-mass (COM) frequencies?
 - Axial COM f. between $\omega_{COM}/2\pi = 2.6$ MHz and 3.4MHz
 - Radial COM f. ~ 8 MHz
- Operations U_N using two-photon stimulated Raman transitions
 - Laser Pulses with a certain freq., duration, intensity & phase; same for all qubits.

Preparation of entangled state

- Start with $|\downarrow,N\rangle$
- Apply unitary operation:

 $U_{N} = (\exp[i\pi/2 J_{x}] \exp[i\xi\pi/2 J_{z}])(\exp[i\pi/2 J_{z}^{2}])(\exp[i\pi/2 J_{x}])$ with $\xi=1$ if N is odd and $\xi=0$ otherwise

- Goal: $|N \operatorname{Cat}\rangle = 1/\sqrt{2} (|\uparrow ... \uparrow\rangle + e^{i\theta} |\downarrow ... \downarrow\rangle)$
- Measure Entanglement!

We need a measure

- Fidelity: $F = |\langle \Psi_N | N \text{ Cat} \rangle|^2$
- Useful:

$$\mathsf{F} = \frac{1}{2} (\mathsf{P}_{\uparrow \mathsf{N}} + \mathsf{P}_{\downarrow \mathsf{N}}) + |\mathsf{C}_{\downarrow \mathsf{N};\uparrow \mathsf{N}}|$$

• That is not all there is:

for N>2 there is no single measure that quantifies entanglement!

• Only comparable if $|\Phi\rangle$ -- via LOCC --> $|\Psi\rangle$

Measure (cont.)

- Witness Operator: $W = 1 2 |N Cat\rangle\langle N Cat |$
- $\langle W \rangle = 1 2 *$ Fidelity
- If $\langle W \rangle < 0$ significantly \Rightarrow entanglement
- then states can be purified by LOCC

Measure (cont.)

 ,depolarization' method: Using LOCC, density matrix gets transformed, then:

N-Particle entanglement if:

 $2 |C_{\downarrow N;\uparrow N}| > \max_{j}(P_{j}+P_{j'})$

- The most important information resides in the magnitude of coherence $C_{VN; \uparrow N}$

Results

From amplitude of parity-oscillations:

from poissonian fits:

- $|C_{\downarrow,4:\uparrow4}| \ge 0.349(2)$ \checkmark $F_{4Cat} \ge 0.76(1)$ \checkmark $|C_{\downarrow5:\uparrow5}| \ge 0.264(2)$ \checkmark $F_{5Cat} \ge 0.60(2)$ \checkmark $|C_{\downarrow_{6}\uparrow_{6}}| \ge 0.210(2) \times F_{6Cat} \ge 0.509(4)$

 - $\langle W_{A} \rangle \leq 0.51(2)$ $\langle W_5 \rangle \le 0.20(2)$ $\langle W_{c} \rangle \leq 0.018(8) \sim$

Results $\langle W_6 \rangle \le 0.018(8) \sim$

Use 'depolarization' method:

 $2 |C_{\downarrow N;\uparrow N}| > \max_{j}(P_{j}+P_{j})$

knowing: $\max_{j}(P_{j}+P_{j'}) \leq 2 \max(P_{j})$

For the $| 6 \text{ Cat} \rangle$ state:

$$|C_{\downarrow 6;\uparrow 6}| \ge 0.210(2) \\ \ge \max_{j}(P_{\downarrow j}|_{j \in \{1,2,3,4,5\}}) = 0.119(9)$$

Take Home Message

 Entanglement of N particles: (theoretical) problem to quantify if N>2

DECOHERENCE IN MULTIPARTICLE SYSTEMS

Andres Vargas Andreas Wanner

EXPERIMENT DESCRIPTION

N 40 Ca⁺ Ions

 $D_{5/2}(m = -1/2) \equiv |0\rangle$

 $S_{1/2}(m=-1/2)\equiv |1\rangle$

$$\begin{split} |\widetilde{0}\rangle &= |0...0\rangle \\ |\widetilde{1}\rangle &= |1...1\rangle \end{split}$$

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}}(|0\dots0\rangle + |1\dots1\rangle)$$

EXPERIMENT DESCRIPTION

COHERANCE AS A FUNTION OF QBIT NUMBER

After the GHZ state is generated the qubit are rotated by

The amplitude of the oscillations is the coherence

DECOHERENCE AS A FUNCTION OF TIME

A time delay is introduce between characterization and creation of state

Coherence time decreases and error increases as number if Q-bit increases

$$\epsilon(N) = N^2$$

MOST RELEVANT RESULTS

For I Qbit with a coherenace time of 95 ms is found

When using a base $|00001111\rangle + |11110000\rangle$

a 324 ms coherence time is obtained, why??

THE MODEL FOR A SINGLE QBIT

$$H = \frac{1}{2}\sigma_z\omega_0 + \sum_k b_k^{\dagger}b_k + \sum_k \sigma_z(g_k b_k^{\dagger} + g_k^* b_k)$$

$$U(t) = \exp\{\sigma_z \frac{1}{2} \sum_k (b_k^{\dagger} \xi_k(t) - b_k \xi_k^*(t))\}$$

$$\sigma_{z}|0\rangle = -1|0\rangle$$

$$\xi_{k}(t) = 2g_{k}\frac{1 - e^{i\omega_{k}t}}{\omega_{k}}$$

$$\sigma_{z}|1\rangle = 1|1\rangle$$

No energy exchange or spin flip

Displacement operator in
Quantum optics
$$D(\alpha) = \exp{\{\alpha a^{\dagger} - \alpha^{*}a\}}$$

 $D(\alpha)|0\rangle = |\alpha\rangle$

$$D(1/2\sigma_z\xi_k) = \exp\{1/2\sigma_z\xi_kb^{\dagger} - 1/2\sigma_z\xi_k^*b\}$$

 $U(t)|0\rangle \otimes |\Psi\rangle = \Pi_k D(-1/2\xi_k(t))$

$$|\Psi\rangle = (c_0|0\rangle + c1|1\rangle) \otimes |0_k\rangle$$
 Entanglement
 $U(t)|\Psi\rangle = c_0|0\rangle| - 1/2\xi_k(t)\rangle + c_1|1\rangle| + 1/2\xi_k(t)\rangle$

Generalization to 2 Qbits

$$H_{int} = \sum_{k} \sigma_{z}^{a} (g_{k}^{a} b_{k}^{\dagger} + g_{k}^{*a} b_{k}) + \sigma_{z}^{b} (g_{k}^{b} b_{k}^{\dagger} + g_{k}^{*b} b_{k})$$
$$U(t) = D(1/2\sigma_{z}^{a}\xi_{k}^{a}(t) + 1/2\sigma_{z}^{b}\xi_{k}^{b}(t))$$

$$|\Phi^{(-)}\rangle = (c_{10}|1_a, 0_b\rangle + c_{01}|0_a, 1_b\rangle) \otimes |0_k\rangle$$

$$|\Phi^{(+)}\rangle = (c_{00}|0_a, 0_b\rangle + c_{11}|1_a, 1_b\rangle) \otimes |0_k\rangle$$

States with 2 different Qbit configuration couple differently to the filed

 $U(t)|\Phi^{(+)}\rangle = (c_{00}|0_a, 0_b\rangle| - 1/2(\xi_k^a + \xi_k^b)\rangle + c_{11}|1_a, 1_b\rangle|1/2(\xi_k^a + \xi_k^b)\rangle$ $U(t)|\Phi^{(-)}\rangle = (c_{10}|1_a, 0_b\rangle| + 1/2(\xi_k^a - \xi_k^b)\rangle + c_{01}|0_a, 1_b\rangle| - 1/2(\xi_k^a - \xi_k^b)\rangle$

If $\xi_k^a = \xi_k^b$ $|\Phi^-\rangle$ Doesn't couple to the field

general *pros* and *cons* regarding **QC with iontraps**

- electron and nuclear spins (Spin½ particles) inherently only have two states (good!)
- problem:

the center of mass oscillations (phonons) have short coherence time

 possible Solution: strong interaction through chemical bonds -> NMR Thanks go out to...

Anna Wanner

soul ≅ % (genome ⊗ culture ⊗ gods further ingredients)

