Violation of Bell Inequalities

Philipp Kurpiers and Anna Stockklauser 5/12/2011

Quantum Systems for Information Technology

Einstein-Podolsky-Rosen paradox (1935)

- Goal: prove that quantum mechanics is incomplete
- Completeness:
 - every element of reality must be represented in a complete physical theory
- Element of reality:
 - value can be predicted with certainty (exists independently of a later measurement)
- Locality:

It is possible to separate physical systems so that they do not influence each other as they cannot transmit information with v>c (space-like separation)

EPR Paradox 2

Thought experiment

- Setup: Two spin 1/2 particles in an entangled singlet state $|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)$
- Perfect anticorrelations

- → Spin value is an element of physical reality
- But QM cannot predict the value
 - → QM cannot be a complete local realistic theory
 - → Solution: hidden variables

Outline

- Bell inequality
 - CHSH classical
 - CHSH quantum mechanical
- Loopholes
 - Detection loophole
 - Locality/Causality loophole
- Experimental violations
 - Optical experiments
 - Josephson phase qubits
- Importance of Bell inequalities

Bell - CHSH classical

$$A(a)B(b) - A(a)B(b') + A(a')B(b) + A(a')B(b') =$$

$$S = E(a,b) - E(a,b') + E(a',b) + E(a',b') \le \pm 2$$

Bell Inequality 5

Bell - CHSH quantum-mech.

for a maximal entangled state:

$$|\phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

and an operator:

$$\widehat{A}(a) = \vec{r}(a) \ \widehat{\sigma} = \sin(a)\widehat{\sigma}_x + \cos(a)\widehat{\sigma}_z \qquad (\phi = 0)$$

$$E_{QM}(a, b) = \langle \phi^+ | \widehat{A}(a) \otimes \widehat{B}(b) | \phi^+ \rangle =$$

$$= \langle \phi^+ | \vec{r}(a) \ \widehat{\sigma} \otimes \vec{r}(b) \ \widehat{\sigma} | \phi^+ \rangle = \cos(a - b)$$

Bell - CHSH quantum-mech.

for a specific set of measurement angles:

$$a = \pi/2$$
 $a' = 0$ $b = \pi/4$ $b' = -\pi/4$

$$E(a,b) = E(a',b) = E(a',b') = -E(a,b') = \cos(\pi/4) = \frac{1}{\sqrt{2}}$$

$$S = E(a, b) - E(a, b') + E(a', b) + E(a', b') \le 2\sqrt{2} \approx 2.8284$$

Implication (if quantum mechanics is correct):

- 'spooky action at a distance' (non local)
- state is not determined before its measurement (not real)
- → Experiments are needed

Bell Inequality 7

Loopholes

- Two EPR requirements not fulfilled in typical experiments:
 - Detection loophole
 - Locality/Causality loophole
 - → Room for the local realistic interpretation
- Goal: close both loopholes in one experiment

Loopholes 8

Detection loophole

- Mainly a problem in photon experiments
- Experiments detect only a subset of the created pairs

 Fair-sampling assumption: the detected pairs constitute a representative sample of all created pairs

Loopholes 9

Locality/Causality Loophole

 Space-like separation must be ensured

$$d \ge ct_{meas}$$

d: distance between particles

c: speed of light

t_{meas}: first point which influences the measurement direction → final registration of the photon

A and C are space-like separated

A and B are not

Loopholes 10

Experiments

Photons:

- Aspect et al.
- Weihs *et al.* } closed locality loophole

Josephson phase qubits:

• Ansmann et al. } closed detection loophole

- - -

Optical experiments - exemplary setup

C. Monroe Nature 416, 238-246 (2002)

PDC type II

Common Source:

Parametric down-conversion

Measurement:

- Using a fourfold coincidence technique
- → directly measure E(a,b) in one run (Fair-sampling assum.)

$$E(a,b) = \frac{C_{HH}(a,b) + C_{VV}(a,b) - C_{HV}(a,b) - C_{VH}(a,b)}{C_{HH}(a,b) + C_{VV}(a,b) + C_{HV}(a,b) + C_{VH}(a,b)}$$

Violation of Bell inequality under strict Einstein locality conditions

Weihs et al. Phys. Rev. Lett. 81, 5039 (1998)

special feature for closing the locality loophole:

- sufficient physical distance between the observers
- ultrafast and random setting of the analyzers
- completely independent data registration

Optical Experiments 13

Spatial separation

- observers spatially separated by 400 m
 - ≈ **1.3** µs until registration of photons
- ←→ whole measurement process takes 100 ns

Optical Experiments 14

Measurement process

- analyzer directions are completely unpredictable
 - physical random number generators
 - fast electro-optic modulators
- independent data registration
 - events registered individually (synchronized by a atomic clock before measurement)
 - compared after the measurements
 - → strict locality conditions

15

Results

- Visibility 97% → S ≈ 2.74
- Measurement:

$$2.73 \pm 0.02$$

violation of 30 standard deviations

but:

"ultimate experiment should also have higher detection efficiency, which was 5% in our experiment."

Optical Experiments 16

Violation in Josephson Phase Qubits

Ansmann et al. Nature 461, 504 (2009)

Two qubits in the Bell singlet state

$$|\psi_s\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

 Josephson phase qubits coupled via a resonator

 \bigcirc 8 \bigcirc $|00\rangle \boxtimes |10\rangle$

- \bigcirc 8 \bigcirc $|00\rangle \otimes |10\rangle$
- ③ & ④ Entanglement via the resonator

$$rac{1}{\sqrt{2}}(\ket{01}-e^{i heta}\ket{10})$$

- \bigcirc 8 \bigcirc $|00\rangle \times |10\rangle$
- ③ & ④ Entanglement via the resonator

$$\frac{1}{\sqrt{2}}(|01\rangle - e^{i\theta}\,|10\rangle)$$

⑤ Rotation to change the measurement axis

- \bigcirc & \bigcirc $|00\rangle \otimes |10\rangle$
- ③ & ④ Entanglement via the resonator

$$rac{1}{\sqrt{2}}(\ket{01}-e^{i heta}\ket{10})$$

- ⑤ Rotation to change the measurement axis
- 6 Measurement along the z-axis

Single shot read-out Measurement fidelity: 94.6 %

Entanglement analysis

Measured density matrix of the entangled state

• Fidelity of the entangled state with respect to the Bell singlet: $F(\rho) = \langle \psi_s | \rho | \psi_s \rangle = 88.3\%$

Results

- S depends on angle between (a',a) and (b',b) plane
- Maximal violation: S=2.0732±0.0003
- Violation of 244 standard deviations

- No true space-like separation → locality loophole remains open

Importance of Bell inequalities

• Bell inequality classical: $S \leq \pm 2$

QM: $S \leq \pm 2\sqrt{2}$

- → Fundamental test whether QM is complete
- Experimental violations
 - Weihs *et al.:* S=2.73±0.02
 - closed locality loophole
 - Ansmann et al.: S=2.0732±0.0003
 - closed detection loophole
- Useful benchmark for the comparison of different quantum computational architectures

References

Aspect, A; Grangier, P; Roger, G

Experimental Realization of EPR-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities
Phys. Rev. Lett. 49, 91 (1982)

- Weihs, G; Jennewein, T; Simon, C; et al. Violation of Bell inequality under strict Einstein locality conditions Phys. Rev. Lett. 81, 5039 (1998)
- Ansmann, M; Wang, H; Bialczak, RC; et al. Violation of Bell's inequality in Josephson phase qubits Nature 461, 504 (2009)