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Quantum computing shows great promise for the solution of many difficult problems, such as the
simulation of quantum systems and the factorization of large numbers. While the theory of quantum
computing is fairly well understood, it has proved difficult to implement quantum computers in real
physical systems. It has recently been shown that nuclear magnetic resoNMRREcan be used

to implement small quantum computers using the spin states of nuclei in carefully chosen small
molecules. Here we demonstrate the use of a NMR quantum computer based on the pyrimidine base
cytosine, and the implementation of a quantum algorithm to solve Deutsch’'s problem
(distinguishing between constant and balanced functiorEhis is the first successful
implementation of a quantum algorithm on any physical system.1998 American Institute of
Physics[S0021-960808)00729-9

I. INTRODUCTION factoring®® Experimental implementation of a quantum
computer has, however, proved difficult. Much effort has
In 1982 Feynman pointed out that it appears to be im-been directed toward implementing quantum computers us-
possible to efficiently simulate the behavior of a quantuming ions trapped by electric and magnetic fieldmd while
mechanical system with a computefhis problem arises this approach has shown some succ¢&éshas proved diffi-
because the quantum system is not confined to its eigercult to progress beyond computers containing a single two-
states, but can exist in any superposition of them, and so thHevel system(corresponding to a single quantum bit, or qu-
space needed to describe the system is very large. To takebé).
simple example, a system comprising two-level sub- Recently two separate approaches have been
systems, such as spin- particles, inhabits a Hilbert space described"*?for the implementation of a quantum computer
of dimension 2, and evolves under a series of transforma-using nuclear magnetic resonatitgNMR). These ap-
tions described by matrices containintj dlements. For this proaches show great promise, as it has proved relatively
reason it is impractical to simulate the behavior of spin syssimple to investigate quantum systems containing two or
tems containing more than about a dozen spins. three qubits>*?1*Here we describe our implementation of a
The difficulty of simulating quantum systems using clas-Simple quantum algorithm for solving Deutsch's probl&fh,
sical computers suggests that quantum systems have an @2 a two qubit NMR quantum computer.
formation processing capability much greater than that of
corresponding classical systems. Thus, it might be possible. QUANTUM COMPUTERS
to build quantum mechanical computéréwhich utilize this All current implementations of quantum computers are
info_rmation proce_ssing capability in an effective way 10 puilt up from a small number of basic elements. The first of
achieve a computing power well beyond that of a classicajhese s the qubit, which plays the same role as that of the bit
computer. Such a quantum computer could be used to effin 5 classical computer. A classical bit can be in one of two
ciently simulate other quantum mechanical systéther to  states, 0 or 1, and similarly a qubit can be represented by any
solve conventional mathematical problefnsyhich suffer two-level system with eigenstates label@ and |1). One
from a similar exponential growth in complexity, such as gpvious implementation is to use the two Zeeman levels of a
factoring? spin+ particle in a magnetic field, and we shall assume this
Considerable progress in this direction has been made inplementation throughout the rest of this paper. Unlike a
recent years. The basic logic elements necessary to carry opji, however, a qubit is not confined to these two eigenstates,
quantum computing are well understood, and quantum algtut can, in general, exist in some superposition of the two
rithms have been developed, both for simple demonstratiostates. It is this ability to exist in superpositions that makes
problem§~® and for more substantial problems such asquantum systems so difficult to simulate and that gives quan-
tum computers their power.

dAuthor to whom correspondence should be addressed at the New Chemis- Th_e second requirement is a set of _|OgiC gate_s, corre-
try Laboratory. Electronic mail: jones@bioch.ox.ac.uk sponding to gates such asD, OR, andNOT in conventional
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Computersl_s Quantum gates differ from their classical coun- TABLE I. The truth table for thecnoT gate. The first qubitthe control
terparts in one very important way: they must bequbit) is unchanged by the gate, while the second qubit is flipped if the

. 5161 a control qubit is in state 1, effectively implementing aor gate.
reversible®® This is because the evolution of any quantum

system can be described by a series of unitary transforma- Input Output

tions, which are themselves reversible. This need for revers- 0 0 o 0
ibility has many consequences for the design of quantum 0 1 0 1
gates. Clearly, for a gate to be reversible it must be possible 1 0 1 1
to reconstruct the input bits knowing only the design of the 1 1 1 0

gate and the output bits, and so every input bit must be iR
some sense preserved in the outputs. One trivial consequence

of this is that the gate must have exactly as many outputs as

inputs. For this reason it is obvious that gates suchnas give rise to signals at different resonance frequencies, while
and OR are not reversible. It is, however, possible to con-the eigenstate of a spin before the excitation can be deter-
struct reversible equivalents ef\p and oR, in which the mined from the relative phagabsorption or emissigrof the
input bits are preserved. NMR signals.

Just as it can be shown that one or more gé&esh as
the NAND gate@ are universal for classical computiigthat |
is, any classical gate can be constructed using only wires an
NAND gates, it can be shown that certain gates or combina-  Deutsch’s problem in its simplest form concerns the
tions of gates are universal for quantum computing. In paranalysis of single-bit binary functions:
ticular, it can be showH that the combination of a general f(x):B—B %)
single qubit rotation with the two bit “controlledoT” gate ' '
(cNOT) is universal. Furthermore, it is possible to build a whereB={0,1} is the set of possible values for a single bit.
reversible equivalent of th®AND gate, and thus to imple- Such functions take a single bit as input, and return a single
ment any classical logic operation using reversible logic. bit as their result. Clearly there are exactly four such func-

Single qubit rotations are easily implemented in NMR, tions, which may be described by their truth tables, as shown
as they correspond to rotations within the subspace corrdn Table Il. These four functions can be divided into two
sponding to a single spin, and such rotations can be achievefoups: the two “constant” functions, for whicf(x) is in-
using radiofrequencyrf) fields. One particularly important dependent ok (fo, andf;,), and the two “balanced” func-
single bit gate is the Hadamard gate, which performs thédions, for whichf(x) is zero for one value ot and unity for

H. THE DEUTSCH ALGORITHM

rotational transformation, the other(fy; and f,g). Given some unknown functiof
(known to be one of these four functiondt is possible to
H 10y +|1) determine which of the four functions it is by applyifigo

|0)— T two known inputs: 0 and 1. This procedure also provides

(1)  enough information to determine whether the function is
H 0)—|1) constant or balanced. However, knowing whether the func-
|1)— ———. tion is constant or balanced corresponds to only one bit of

V2 information, and so it might be possible to answer this ques-
The Hadamard operator can thus be used to convert eigej‘:éonrllyusiltn31iZEItbengoz\s/%ﬁaattfndgtfe:rr']rﬁn];uTr?gd\/nalﬁg?géa)_
states into superpositions of states. Similarly, as the Ha (1) using only one evaluation dt (The symbol® indi-

gmard IS self-mversg, It can be used to convert SUPETPOSE,tes addition modulo 2, and for two one bit numbarand
tions of states back into eigenstates for later analysis.

. ) - b, a®b equals 0 ifa andb are the same, and 1 if they are
Two-bit gates correspond to rotations within subspaces;. : )
. ; . ) ifferent) In fact, this can be achieved as long as the calcu-
corresponding to two spins, and thus require some kind of .. = . ;
. L : . . lation is performed using a quantum computer rather than a
spin—spin interaction for their implementation. In NMR the classical one

a5 deally sued for the construction of contolied gaes,  QUEATIU COMPUters of necessity use reversible logc,
y g and so it is not possible to implement the binary functfon

such ascNOT. This gate operates to invert the value of one . : . .
. - directly. It is, however, possible to design a propagdithr,
qubit when another qubithe control qubithas some speci- . o ; X )
which captured within a reversible transformation by using

fied value, usuallyl); its truth table is shown in Table I. i : . .
: " . system with two input qubits and two output qubits as
Finally, it is necessary to have some way of reading oudD"OWS_

information about the final quantum state of the system, an
thus obtaining the result of the calculation. In most imple-

mentatlon.s ,Of qua,ntum compl,!ters, this process Is eqUIvalquABLE Il. The four possible binary functions mapping one bit to another.
to determining which of two eigenstates a two-level system

is in, but this is not a practical approach in NMR. It is, X foo(X) for(X) f10(X) f14(X)
however, possible to obtain equivalent information by excit- o 0 1 1
ing the spin system and observing the resulting NMR spec- 4 0 1 0 1

trum. Different qubits correspond to different spins, and thus
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FIG. 2. A quantum circuit for solving Deutsch’s problem.

FIG. 1. Quantum circuit for the analysis of a binary function

Uy 0)+[2)} [10)= 1)} V1 (=1)" o)+ (- 1)®[1)
X y)—[x)ly® f(x)). 3 2 2 |7 2
The two input bits are preservda is preserved directly,
while y is preserved by combining it with(x), the desired |0)—1) ) |0)+ (—1)f@efD)1)
resulfl, and soU; corresponds to a reversible transformation. =(=1
; V2 V2
Note that for any one bit number, 0¢a=a, and so values
of f(x) can be determined by setting the second input bit to |0)—11)
0. Using this propagator and appropriate input states, it is X 2 ) (7)
possible to evaluaté(0) andf(1) using
Uy with the first qubit ending up in the superpositiof0)
|0)|0)—|0)|f(0)) 4 i|1))/\/§, with the desired answéif(0)®f(1)] encoded
and as therelative phase of the two states contributing to the
U superposition. This relative phase can be measured, and so
|1>|0>_f)|1>|f(1)>_ (5) the value off(0)®f(1) (that is, whetherf is constant or

) , ) balanced has been determined using only one application of
The approach outlined above, in which the state of §ng nronagatots;, that is, only one evaluation of the func-
quantum computer is described explicitly, swiftly becomes;;,, ¢
unwieldy, and it is useful to use more compact notations.  Thig approach can be easily implemented using a quan-

One particularly simple approach is to use quantumMy,m circyit, as shown in Fig. 2. This circuit starts off from

. . 18 . . .
circuits;™ which may be drawn by analogy with classical ororonriate eigenstates, uses Hadamard transformations to

electronic circuits. In this approach lines are used to reprezgvert these into superpositions, applies the propadator
sent “wires” down which qubits “flow,” while boxes rep-

X - to these superpositions, and finally uses another pair of Had-
resent quantum gates that perform appropriate unitary rangimarq transforms to convert the superpositions back into

formations. For example, the analysis df can be gjgenstates that encode the desired result.
summarised by the circuit shown in Fig. 1.
So far, this is simply LISiI’lg a quantum computer to simu-|V_ IMPLEMENTING THE DEUTSCH ALGORITHM IN
late a classical computer implementing classical algorithmsymRr
With a quantum computer, however, it is not necessary to , ,
start with the system in some eigenstate; instead, it is pos- The Deutsch algorithm can be implemented on a quan-
sible to begin with a superposition of states. Suppose thi§m computer With two qubits, suph as a NMR quantum
calculation begins with the second qubit in the superpositiorﬁ;Omputer based on two coupled spins. First, it is necessary to

how that the individual components of the quantum circuit
0)—[1))/\2. Th s
(10)=11) V2 en can be built. It is convenient to begin by writing down the
|0)— 1) Y 0@ f(x))—|1af(x)) necessary states and operators using the product operator ba-
) 2 — %) 2 , sis set>!® normally used in describing NMR experiments
(this basis is formed by taking outer products between Pauli
|0)—|1) matrices describing the individual spins, together with the
|x) , if f(x)=0, scaled unit matrix, 1/E).
_ V2 The initial state]y,)=|0)|1), can be written as a vec-
" 11)—|0) § f00=1 tor in Hilbert space,
Xy ———, | X)=1,
2 0
1
0)—|1 | or) = : ®
—(—1)'™|x) M (6) 0 0
J2 0

(We have used the fact thatth=a, as before, while 1 but this description is not really appropriate. Unlike other
@®a=1 if a=0 and 0 ifa=1.) The value off(x) is now implementations, a NMR quantum computer comprises not
encoded in the overall phase of the result, with the qubits leffust a single set of spins but rather an ensemble of spins in a
otherwise unchanged. While this is not particularly useful,statistical mixture of states. Such a system is most conve-
suppose the calculation begins with the first qubit also in aiently treated using a density matrix, which can describe
superposition of states, namel\0§+|1))/y2. The® either a mixture or a pure state; for example,
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0 00O (a)
01 0O 9()°
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0 00O
Uy
0 0 0O
. . . . 0) 90, +
This density matrix can be decomposed in the product op

erator basis aspg;=(l,—S,—2l,S,+1/2E)/2. Ignoring
multiples of the unit matriXwhich give rise to no observable
effects in any NMR experimeptthis can be reached from
the thermal equilibrium density matrid (+ S,) by a series

of rf and field gradient pulses. l0) 90° .
The unitary transformation matrix corresponding to the y
Hadamard operator on a single spin can be written as Uf
ENENE o W 90, —x
- \/5 1 _1 . ( )

FIG. 3. Modified quantum circuits for the analysis of binary functions on a

This corresponds to a 180° rotation around an axis tilted at v/~ duantum computera) A circit for the classical analysis 6{0); the
normal circuit(see Fig. 1 is followed by 99 pulses to excite the NMR

45° between thez and x axes. Such a rotation can be spectrum. Clearlyf(1) can be obtained in a similar wagh) A circuit for
achieved directly using an off resonance pdfSer using a  the implementation of the Deutsch algorithm, with Hadamard operators re-
three pulse sandwi&ﬁ such as 4;:,— 18(;—45‘%,_ Even placed by 9Qy pulses. The final E{pexcitatiqn pulses cancel out the"_Qp
more simply, the Hadamard can be approximated by°ya 9Opulses, and thus all four pulses can be omitted.
pulse. While this is clearly not a true Hadamard operétar
example, it is not self-inverggits behavior is similar, and it
can be used in some cases: for example, it is possible tgither periods of free precession under Zeeman Hamiltonians
replace the first pair of Hadamard gates in the circuit for theyy the application of composite pulses?®?* Similarly, U,
Deutsch AlgOflthn{Flg 2) by 9@ pUlseS and the second pair can be achieved using the pu|se sequence
of gates by 9Dy pulses. Clearly, it is possible to apply the
Hadamard operator either to just one of the two sgusing _ _ _
selective soft rf pulsé® or to both spins simultaneously 905y~ couple- 901~ 905, ~ 905 (13
(using nonselective hard pulges

The unitary transformations corresponding to the four
possible propagatoid; are also easily derived. Each propa-
gator corresponds to flipping the state of the second qub
under certain conditions as follows),yq, never flip the sec-
ond qubit;Ugy,, flip the second qubit when the first qubit is
in state onelJ 1q, flip the second qubit when the first qubit is
in state zerolJ,,, always flip the second qubit. The first and 905y~ 1/4);s~ 18Q,~ 1/43;5~ 180, 901y = 901, = 90..,
last cases are particularly simple, dg, corresponds to do- —90S..,, (14)
ing nothing (the identity operation while U4, corresponds
to inverting the second spifa conventionalNoT gate, or,  where pulses not marked as either S were applied to both
equivalently, a 180° pulseThe second and third propaga- nyclei. The phase of the final pulse distinguishég (for
tors correspond to controlledeT gates, which can be imple- which the final pulse iS. ) from Uy, (for which it is S_,).
mented using spin—spin couplings. For examplg; is de- Finally, it is necessary to consider an analysis of the final
scribed by the matrix state, which could, in general, be one of the four staigs

Po1s P1g. OF p11- In order to distinguish these states it is

The pulse sequences described above can be imple-
mented in many different ways, as different composite
ulses can be used, the order of some of the pulses can be
aried, and in some cases different pulses can be combined
together. We chose to use the implementation

1000 necessary to apply a Qtibulse and observe the NMR spec-

0 1 0O trum. The final NMR signal observed from sgins |, if the
Uo= 00 0 1/’ 1D spin is in state 0, ane- 1, if it is in state 1. For a computer

00 1 0 implementing the Deutsch algorithm the final detectiof) 90

pulses cancel out the two final pseudo—HadamardyQO
pulses, and thus all four pulses can be omifteee Fig. 3.
The final NMR signal observed is either 1/2-1/2 S, (cor-
903, — couple- 901 ,—90S_,—90S_,, (12)  responding topoy) or —1/21,—1/2S, (corresponding to

p11). Hence, it is simple to determine the value ©{f0)
where 9@, indicates a 90° pulse on the second spoyple @ f(1) (that is, determine whether the function is constant or
indicates evolution under the scalar coupling Hamiltonianbalanced by determining the relative phase of the signals
mJ,521,S,, for a time 1/3,5, and 90, and 9(&_, indicate  from the two spins.

which can be achieved using the pulse sequence
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FIG. 5. Experimental implementation of an algorithm to deternfifle) on
a NMR quantum computer; in this case the algorithm starts with sin
the excited statd1), and so signals from spinare in emission. For details
of the labeling see Fig. 4.

FIG. 4. Experimental implementation of an algorithm to deternfif@ on

a NMR guantum computefa) The result of applyindJ;qy; as this propa-
gator is the identity matrix this spectrum can also serve as a reference. T
left-hand pair of signals corresponds to the first spin vhile the pair on
the right-hand side correspond to the second sgjn Note that the signals

fLOfT%thth Spli”S;WhiCIh are in St;‘tﬁ% the gffOl_md ISfaPeafe ,:In,abst:)fpﬁo_”- not be affected, and so should remain in st@teThe phase
;S) y O‘;;%S;’;r‘ih;pﬁjﬁ';?;ff(lc’) 'I?r:e Srifu ; Oi'%?)i; Er;fslt[" ne Ssig;‘z;l':”' of the reference spectruf) was adjusted so that signals
from spin S are now in emission, sincg0)=1 for this function.(d) The from spinl appear in absorption, and the same phase correc-
result of applyingU,;; the signals from spiS are once again in emission tion was applied to the other three spectra. The state of a spin
as expected. after a calculation can then be determined by determining
whether the corresponding signals in the spectrum are in ab-
sorption(state|0)) or emission(state|1)). As expected, spih
V. EXPERIMENT does indeed remain in sta®, while the value off (0) (de-
_ termined from spirS) is 0 for U; _andU; , but 1 forU;

In order to demonstrate the results described above, we 00 01 10
have constructed a NMR quantum computer capable o"fmdufn' ]
implementing the Deutsch algorithm. For our two-spin sys-  Cléarly, our NMR quantum computer is capable of
tem we chose to use a 50 mM solution of the pyrimidine'mpl?mem'ng this classical algorithm, as it is sw_nple .to de-
base cytosine in BD; a rapid exchange of the two amine termmgf(O). Theother.value,f(l)_, can bede_termlne.d ina
protons and the single amide proton with the deuterated sole!Y Similar way(see Fig. 5. In this case spit remains in
vent leaves two remaining protons forming an isolated twoState|1), while f(1) equals 0 folUr, andUy, and equals 1
spin system. All NMR experiments were conducted at 20 °dfor Uy andUy . There are, however, several imperfections
andpH* =7 on a home-built NMR spectrometer at the Ox- visible in the results.
ford Centre for Molecular Sciences, with'd operating fre- First, the signals are not perfectly phased: rather than
guency of 500 MHz. The observed J coupling between thexhibiting pure absorption or pure emission lineshapes, the
two protons was 7.2 Hz, while the difference in resonancesignals have more complex shapes, including dispersive
frequencies was 763 Hz. Selective excitation was achievedomponents. These arise from the difficulty of implementing
using Gaussia&? soft pulses incorporating a phase rénd  perfect selective pulses, which effect the desired rotation at
to allow excitation away from the transmitter frequency.one spin while leaving the other spin entirely unaffected.
During a selective pulse the oth@mexcited spin continues  Similarly, the selective pulses will not perfectly suppress J
to experience the main Zeeman interaction, resulting in @ouplings during the excitation, leading to the appearance of
rotation around the axis, but the length of the selective antiphase contributions to the lineshape. Any practical selec-
pulses can be chosen such that the net rotation experiencéde pulse will be imperfect, and so will result in systematic
by the other spin is zero. The residual HOD resonance wadistortions in the final result. Note that these distortions are
suppressed by low-power saturation during the relaxation demost severe in casg®) and (c), where the propagator is
lays. complex, containing a large number of selective pulses. In-

This system can be used both for the implementation oferestingly, the distortions are also more severe for the mea-
classical algorithms to analyz§0) and f(1) and for the surement off (0) (Fig. 4) than forf(1) (Fig. 5); there is no
implementation of the Deutsch algorithm; as shown in Fig. 3simple explanation for this effect, which is due to the com-
the pulse sequences differ only in the placement of thHe 90plex interplay of many selective pulses. We are currently
pulses. The results for the classical algorithm to determinseeking ways to minimize these effects.
f(0) are shown in Fig. 4. The left-hand pair of signals cor-  Second, the signal intensities vary in different cases; as
responds to the first spin), while the pair on the right-hand before, the signal loss is most severe in cag@sand (c),
side correspond to the second sp8&);(the (barely visible  corresponding to complex propagators. This is in part a con-
splitting in each pair arises from the scalar couplihg. In  sequence of imperfect selective pulses, as discussed above,
this experiment the value df(0) is determined by setting but may also indicate the effects of spin relaxation, that is,
both spinsl andS into state|0), performing the calculation, decoherence of the states involved in the calculation. Deco-
and then measuring the final state of sfinspin| should herence is a fundamental problem, and may ultimately limit
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