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Implementation of a quantum algorithm on a nuclear magnetic resonance
quantum computer
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Quantum computing shows great promise for the solution of many difficult problems, such as the
simulation of quantum systems and the factorization of large numbers. While the theory of quantum
computing is fairly well understood, it has proved difficult to implement quantum computers in real
physical systems. It has recently been shown that nuclear magnetic resonance~NMR! can be used
to implement small quantum computers using the spin states of nuclei in carefully chosen small
molecules. Here we demonstrate the use of a NMR quantum computer based on the pyrimidine base
cytosine, and the implementation of a quantum algorithm to solve Deutsch’s problem
~distinguishing between constant and balanced functions!. This is the first successful
implementation of a quantum algorithm on any physical system. ©1998 American Institute of
Physics.@S0021-9606~98!00729-6#
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I. INTRODUCTION

In 1982 Feynman pointed out that it appears to be
possible to efficiently simulate the behavior of a quant
mechanical system with a computer.1 This problem arises
because the quantum system is not confined to its eig
states, but can exist in any superposition of them, and so
space needed to describe the system is very large. To ta
simple example, a system comprisingN two-level sub-
systems, such asN spin-12 particles, inhabits a Hilbert spac
of dimension 2N, and evolves under a series of transform
tions described by matrices containing 4N elements. For this
reason it is impractical to simulate the behavior of spin s
tems containing more than about a dozen spins.

The difficulty of simulating quantum systems using cla
sical computers suggests that quantum systems have a
formation processing capability much greater than that
corresponding classical systems. Thus, it might be poss
to build quantum mechanical computers,1–4 which utilize this
information processing capability in an effective way
achieve a computing power well beyond that of a class
computer. Such a quantum computer could be used to
ciently simulate other quantum mechanical systems,1,3 or to
solve conventional mathematical problems,4 which suffer
from a similar exponential growth in complexity, such
factoring.5

Considerable progress in this direction has been mad
recent years. The basic logic elements necessary to carr
quantum computing are well understood, and quantum a
rithms have been developed, both for simple demonstra
problems6–8 and for more substantial problems such
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factoring.4,5 Experimental implementation of a quantu
computer has, however, proved difficult. Much effort h
been directed toward implementing quantum computers
ing ions trapped by electric and magnetic fields,9 and while
this approach has shown some success,10 it has proved diffi-
cult to progress beyond computers containing a single t
level system~corresponding to a single quantum bit, or q
bit!.

Recently two separate approaches have b
described11,12 for the implementation of a quantum comput
using nuclear magnetic resonance13 ~NMR!. These ap-
proaches show great promise, as it has proved relativ
simple to investigate quantum systems containing two
three qubits.11,12,14Here we describe our implementation of
simple quantum algorithm for solving Deutsch’s problem,6–8

on a two qubit NMR quantum computer.

II. QUANTUM COMPUTERS

All current implementations of quantum computers a
built up from a small number of basic elements. The first
these is the qubit, which plays the same role as that of the
in a classical computer. A classical bit can be in one of t
states, 0 or 1, and similarly a qubit can be represented by
two-level system with eigenstates labeledu0& and u1&. One
obvious implementation is to use the two Zeeman levels o
spin-12 particle in a magnetic field, and we shall assume t
implementation throughout the rest of this paper. Unlike
bit, however, a qubit is not confined to these two eigensta
but can, in general, exist in some superposition of the t
states. It is this ability to exist in superpositions that mak
quantum systems so difficult to simulate and that gives qu
tum computers their power.

The second requirement is a set of logic gates, co
sponding to gates such asAND, OR, andNOT in conventional
is-
8 © 1998 American Institute of Physics
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computers.15 Quantum gates differ from their classical cou
terparts in one very important way: they must
reversible.15,16 This is because the evolution of any quantu
system can be described by a series of unitary transfor
tions, which are themselves reversible. This need for rev
ibility has many consequences for the design of quan
gates. Clearly, for a gate to be reversible it must be poss
to reconstruct the input bits knowing only the design of t
gate and the output bits, and so every input bit must be
some sense preserved in the outputs. One trivial consequ
of this is that the gate must have exactly as many output
inputs. For this reason it is obvious that gates such asAND

and OR are not reversible. It is, however, possible to co
struct reversible equivalents ofAND and OR, in which the
input bits are preserved.

Just as it can be shown that one or more gates~such as
the NAND gate! are universal for classical computing15 ~that
is, any classical gate can be constructed using only wires
NAND gates!, it can be shown that certain gates or combin
tions of gates are universal for quantum computing. In p
ticular, it can be shown17 that the combination of a genera
single qubit rotation with the two bit ‘‘controlled-NOT’’ gate
~CNOT! is universal. Furthermore, it is possible to build
reversible equivalent of theNAND gate, and thus to imple
ment any classical logic operation using reversible logic.

Single qubit rotations are easily implemented in NM
as they correspond to rotations within the subspace co
sponding to a single spin, and such rotations can be achie
using radiofrequency~rf! fields. One particularly importan
single bit gate is the Hadamard gate, which performs
rotational transformation,

u0&→
H u0&1u1&

A2
,

~1!

u1&→
H u0&2u1&

A2
.

The Hadamard operator can thus be used to convert ei
states into superpositions of states. Similarly, as the H
amard is self-inverse, it can be used to convert superp
tions of states back into eigenstates for later analysis.

Two-bit gates correspond to rotations within subspa
corresponding to two spins, and thus require some kind
spin–spin interaction for their implementation. In NMR th
scalar spin–spin coupling~J coupling! has the correct form
and is ideally suited for the construction of controlled gat
such asCNOT. This gate operates to invert the value of o
qubit when another qubit~the control qubit! has some speci
fied value, usuallyu1&; its truth table is shown in Table I.

Finally, it is necessary to have some way of reading
information about the final quantum state of the system,
thus obtaining the result of the calculation. In most imp
mentations of quantum computers, this process is equiva
to determining which of two eigenstates a two-level syst
is in, but this is not a practical approach in NMR. It i
however, possible to obtain equivalent information by exc
ing the spin system and observing the resulting NMR sp
trum. Different qubits correspond to different spins, and th
Downloaded 19 Oct 2009 to 129.132.128.136. Redistribution subject to A
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give rise to signals at different resonance frequencies, w
the eigenstate of a spin before the excitation can be de
mined from the relative phase~absorption or emission! of the
NMR signals.

III. THE DEUTSCH ALGORITHM

Deutsch’s problem in its simplest form concerns t
analysis of single-bit binary functions:

f ~x!:B°B, ~2!

whereB5$0,1% is the set of possible values for a single b
Such functions take a single bit as input, and return a sin
bit as their result. Clearly there are exactly four such fun
tions, which may be described by their truth tables, as sho
in Table II. These four functions can be divided into tw
groups: the two ‘‘constant’’ functions, for whichf (x) is in-
dependent ofx ~f 00 and f 11!, and the two ‘‘balanced’’ func-
tions, for whichf (x) is zero for one value ofx and unity for
the other ~f 01 and f 10!. Given some unknown functionf
~known to be one of these four functions!, it is possible to
determine which of the four functions it is by applyingf to
two known inputs: 0 and 1. This procedure also provid
enough information to determine whether the function
constant or balanced. However, knowing whether the fu
tion is constant or balanced corresponds to only one bi
information, and so it might be possible to answer this qu
tion using only one evaluation of the functionf . Equiva-
lently, it might be possible to determine the value off (0)
% f (1) using only one evaluation off . ~The symbol% indi-
cates addition modulo 2, and for two one bit numbers,a and
b, a% b equals 0 ifa andb are the same, and 1 if they ar
different.! In fact, this can be achieved as long as the cal
lation is performed using a quantum computer rather tha
classical one.

Quantum computers of necessity use reversible lo
and so it is not possible to implement the binary functionf
directly. It is, however, possible to design a propagator,U f ,
which capturesf within a reversible transformation by usin
a system with two input qubits and two output qubits
follows:

TABLE I. The truth table for theCNOT gate. The first qubit~the control
qubit! is unchanged by the gate, while the second qubit is flipped if
control qubit is in state 1, effectively implementing anXOR gate.

Input Output

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

TABLE II. The four possible binary functions mapping one bit to anoth

x f00(x) f 01(x) f 10(x) f 11(x)

0 0 0 1 1
1 0 1 0 1
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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ux&uy&→
U f

ux&uy% f ~x!&. ~3!

The two input bits are preserved@x is preserved directly,
while y is preserved by combining it withf (x), the desired
result#, and soU f corresponds to a reversible transformatio
Note that for any one bit numbera, 0% a5a, and so values
of f (x) can be determined by setting the second input bi
0. Using this propagator and appropriate input states,
possible to evaluatef (0) and f (1) using

u0&u0&→
U f

u0&u f ~0!& ~4!

and

u1&u0&→
U f

u1&u f ~1!&. ~5!

The approach outlined above, in which the state o
quantum computer is described explicitly, swiftly becom
unwieldy, and it is useful to use more compact notatio
One particularly simple approach is to use quant
circuits,18 which may be drawn by analogy with classic
electronic circuits. In this approach lines are used to rep
sent ‘‘wires’’ down which qubits ‘‘flow,’’ while boxes rep-
resent quantum gates that perform appropriate unitary tr
formations. For example, the analysis off can be
summarised by the circuit shown in Fig. 1.

So far, this is simply using a quantum computer to sim
late a classical computer implementing classical algorith
With a quantum computer, however, it is not necessary
start with the system in some eigenstate; instead, it is p
sible to begin with a superposition of states. Suppose
calculation begins with the second qubit in the superposi
(u0&2u1&)/A2. Then

ux&S u0&2u1&

A2
D→U f

ux&S u0% f ~x!&2u1% f ~x!&

A2
D ,

55 ux&
u0&2u1&

A2
, if f ~x!50,

ux&
u1&2u0&

A2
, if f ~x!51,

5~21! f ~x!ux&
u0&2u1&

A2
. ~6!

~We have used the fact that 0% a5a, as before, while 1
% a51 if a50 and 0 if a51.! The value of f (x) is now
encoded in the overall phase of the result, with the qubits
otherwise unchanged. While this is not particularly use
suppose the calculation begins with the first qubit also i
superposition of states, namely (u0&1u1&)/A2. Then8

FIG. 1. Quantum circuit for the analysis of a binary functionf .
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S u0&1u1&

A2
D S u0&2u1&

A2
D→U f S ~21! f ~0!u0&1~21! f ~1!u1&

A2
D

3S u0&2u1&

A2
D 5~21! f ~0!S u0&1~21! f ~0! % f ~1!u1&

A2
D

3S u0&2u1&

A2
D , ~7!

with the first qubit ending up in the superposition (u0&
6u1&)/A2, with the desired answer@ f (0)% f (1)# encoded
as therelative phase of the two states contributing to th
superposition. This relative phase can be measured, an
the value of f (0)% f (1) ~that is, whetherf is constant or
balanced! has been determined using only one application
the propagatorU f , that is, only one evaluation of the func
tion f .

This approach can be easily implemented using a qu
tum circuit, as shown in Fig. 2. This circuit starts off from
appropriate eigenstates, uses Hadamard transformation
convert these into superpositions, applies the propagatoU f

to these superpositions, and finally uses another pair of H
amard transforms to convert the superpositions back
eigenstates that encode the desired result.

IV. IMPLEMENTING THE DEUTSCH ALGORITHM IN
NMR

The Deutsch algorithm can be implemented on a qu
tum computer with two qubits, such as a NMR quantu
computer based on two coupled spins. First, it is necessa
show that the individual components of the quantum circ
can be built. It is convenient to begin by writing down th
necessary states and operators using the product operato
sis set13,19 normally used in describing NMR experimen
~this basis is formed by taking outer products between P
matrices describing the individual spins, together with t
scaled unit matrix, 1/2E!.

The initial state,uc01&5u0&u1&, can be written as a vec
tor in Hilbert space,

uc01&5S 0
1
0
0
D , ~8!

but this description is not really appropriate. Unlike oth
implementations, a NMR quantum computer comprises
just a single set of spins but rather an ensemble of spins
statistical mixture of states. Such a system is most con
niently treated using a density matrix, which can descr
either a mixture or a pure state; for example,

FIG. 2. A quantum circuit for solving Deutsch’s problem.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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r015uc01&^c01u5S 0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D . ~9!

This density matrix can be decomposed in the product
erator basis asr015(I z2Sz22I zSz11/2E)/2. Ignoring
multiples of the unit matrix~which give rise to no observabl
effects in any NMR experiment!, this can be reached from
the thermal equilibrium density matrix (I z1Sz) by a series
of rf and field gradient pulses.11

The unitary transformation matrix corresponding to t
Hadamard operator on a single spin can be written as

H5
1

A2
S 1 1

1 21D . ~10!

This corresponds to a 180° rotation around an axis tilted
45° between thez and x axes. Such a rotation can b
achieved directly using an off resonance pulse,13 or using a
three pulse sandwich13 such as 45y

+ 2180x
+ 2452y

+ . Even
more simply, the Hadamard can be approximated by ay

+

pulse. While this is clearly not a true Hadamard operator~for
example, it is not self-inverse!, its behavior is similar, and i
can be used in some cases: for example, it is possibl
replace the first pair of Hadamard gates in the circuit for
Deutsch Algorithm~Fig. 2! by 90y

+ pulses and the second pa
of gates by 902y

+ pulses. Clearly, it is possible to apply th
Hadamard operator either to just one of the two spins~using
selective soft rf pulses20! or to both spins simultaneousl
~using nonselective hard pulses!.

The unitary transformations corresponding to the fo
possible propagatorsU f are also easily derived. Each prop
gator corresponds to flipping the state of the second q
under certain conditions as follows:U00, never flip the sec-
ond qubit;U01, flip the second qubit when the first qubit
in state one;U10, flip the second qubit when the first qubit
in state zero;U11, always flip the second qubit. The first an
last cases are particularly simple, asU00 corresponds to do
ing nothing ~the identity operation!, while U11 corresponds
to inverting the second spin~a conventionalNOT gate, or,
equivalently, a 180° pulse!. The second and third propaga
tors correspond to controlled-NOT gates, which can be imple
mented using spin–spin couplings. For example,U01 is de-
scribed by the matrix

U015S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D , ~11!

which can be achieved using the pulse sequence

90Sy2couple290I z290S2z290S2y , ~12!

where 90Sy indicates a 90° pulse on the second spin,couple
indicates evolution under the scalar coupling Hamiltoni
pJIS2I zSz , for a time 1/2JIS , and 90I z and 90S2z indicate
Downloaded 19 Oct 2009 to 129.132.128.136. Redistribution subject to A
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either periods of free precession under Zeeman Hamiltonia
or the application of compositez pulses.20,21 Similarly, U10

can be achieved using the pulse sequence

90Sy2couple290I z290Sz290S2y . ~13!

The pulse sequences described above can be imp
mented in many different ways, as different compositez
pulses can be used, the order of some of the pulses can
varied, and in some cases different pulses can be combin
together. We chose to use the implementation

90Sy21/4JIS2180x21/4JIS2180x290I y290I x2902y

290S6x , ~14!

where pulses not marked as eitherI or S were applied to both
nuclei. The phase of the final pulse distinguishesU01 ~for
which the final pulse isS1x! from U10 ~for which it is S2x!.

Finally, it is necessary to consider an analysis of the fina
state, which could, in general, be one of the four statesr00,
r01, r10, or r11. In order to distinguish these states it is
necessary to apply a 90y

+ pulse and observe the NMR spec-
trum. The final NMR signal observed from spinI is I x if the
spin is in state 0, and2I x if it is in state 1. For a computer
implementing the Deutsch algorithm the final detection 90y

+

pulses cancel out the two final pseudo-Hadamard 902y
+

pulses, and thus all four pulses can be omitted~see Fig. 3!.
The final NMR signal observed is either 1/2I x21/2Sx ~cor-
responding tor01! or 21/2 I x21/2Sx ~corresponding to
r11!. Hence, it is simple to determine the value off (0)
% f (1) ~that is, determine whether the function is constant o
balanced! by determining the relative phase of the signals
from the two spins.

FIG. 3. Modified quantum circuits for the analysis of binary functions on a
NMR quantum computer.~a! A circuit for the classical analysis off (0); the
normal circuit ~see Fig. 1! is followed by 90y

+ pulses to excite the NMR
spectrum. Clearlyf (1) can be obtained in a similar way.~b! A circuit for
the implementation of the Deutsch algorithm, with Hadamard operators r
placed by 906y

+ pulses. The final 90y
+ excitation pulses cancel out the 902y

+

pulses, and thus all four pulses can be omitted.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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V. EXPERIMENT

In order to demonstrate the results described above
have constructed a NMR quantum computer capable
implementing the Deutsch algorithm. For our two-spin s
tem we chose to use a 50 mM solution of the pyrimidi
base cytosine in D2O; a rapid exchange of the two amin
protons and the single amide proton with the deuterated
vent leaves two remaining protons forming an isolated tw
spin system. All NMR experiments were conducted at 20
andpH* 57 on a home-built NMR spectrometer at the O
ford Centre for Molecular Sciences, with a1H operating fre-
quency of 500 MHz. The observed J coupling between
two protons was 7.2 Hz, while the difference in resonan
frequencies was 763 Hz. Selective excitation was achie
using Gaussian22 soft pulses incorporating a phase ramp23,24

to allow excitation away from the transmitter frequenc
During a selective pulse the other~unexcited! spin continues
to experience the main Zeeman interaction, resulting i
rotation around thez axis, but the length of the selectiv
pulses can be chosen such that the net rotation experie
by the other spin is zero. The residual HOD resonance
suppressed by low-power saturation during the relaxation
lays.

This system can be used both for the implementation
classical algorithms to analyzef (0) and f (1) and for the
implementation of the Deutsch algorithm; as shown in Fig
the pulse sequences differ only in the placement of they

+

pulses. The results for the classical algorithm to determ
f (0) are shown in Fig. 4. The left-hand pair of signals c
responds to the first spin (I ), while the pair on the right-hand
side correspond to the second spin (S); the ~barely visible!
splitting in each pair arises from the scalar couplingJIS . In
this experiment the value off (0) is determined by setting
both spinsI andS into stateu0&, performing the calculation
and then measuring the final state of spinS; spin I should

FIG. 4. Experimental implementation of an algorithm to determinef (0) on
a NMR quantum computer.~a! The result of applyingU f 00 ; as this propa-
gator is the identity matrix this spectrum can also serve as a reference
left-hand pair of signals corresponds to the first spin (I ), while the pair on
the right-hand side correspond to the second spin (S). Note that the signals
from both spins~which are in stateu0&, the ground state! are in absorption.
~b! The result of applyingU f 01 ; both sets of signals are still in absorptio
as f (0)50 for this function.~c! The result of applyingU f 10 ; the signals
from spinS are now in emission, sincef (0)51 for this function.~d! The
result of applyingU f 11 ; the signals from spinS are once again in emission
as expected.
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not be affected, and so should remain in stateu0&. The phase
of the reference spectrum~a! was adjusted so that signa
from spinI appear in absorption, and the same phase cor
tion was applied to the other three spectra. The state of a
after a calculation can then be determined by determin
whether the corresponding signals in the spectrum are in
sorption~stateu0&! or emission~stateu1&!. As expected, spinI
does indeed remain in stateu0&, while the value off (0) ~de-
termined from spinS! is 0 for U f 00

andU f 01
, but 1 forU f 10

andU f 11
.

Clearly, our NMR quantum computer is capable
implementing this classical algorithm, as it is simple to d
termine f (0). Theother value,f (1), can bedetermined in a
very similar way~see Fig. 5!. In this case spinI remains in
stateu1&, while f (1) equals 0 forU f 00

andU f 10
and equals 1

for U f 01
andU f 11

. There are, however, several imperfectio
visible in the results.

First, the signals are not perfectly phased: rather th
exhibiting pure absorption or pure emission lineshapes,
signals have more complex shapes, including dispers
components. These arise from the difficulty of implementi
perfect selective pulses, which effect the desired rotation
one spin while leaving the other spin entirely unaffecte
Similarly, the selective pulses will not perfectly suppress
couplings during the excitation, leading to the appearanc
antiphase contributions to the lineshape. Any practical se
tive pulse will be imperfect, and so will result in systema
distortions in the final result. Note that these distortions
most severe in cases~b! and ~c!, where the propagator is
complex, containing a large number of selective pulses.
terestingly, the distortions are also more severe for the m
surement off (0) ~Fig. 4! than for f (1) ~Fig. 5!; there is no
simple explanation for this effect, which is due to the co
plex interplay of many selective pulses. We are curren
seeking ways to minimize these effects.

Second, the signal intensities vary in different cases
before, the signal loss is most severe in cases~b! and ~c!,
corresponding to complex propagators. This is in part a c
sequence of imperfect selective pulses, as discussed ab
but may also indicate the effects of spin relaxation, that
decoherence of the states involved in the calculation. De
herence is a fundamental problem, and may ultimately li

he

FIG. 5. Experimental implementation of an algorithm to determinef (1) on
a NMR quantum computer; in this case the algorithm starts with spinI in
the excited state,u1&, and so signals from spinI are in emission. For details
of the labeling see Fig. 4.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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the size of practical quantum computers,25–27 although a va-
riety of error correction techniques28–30have been devised to
overcome it.

These imperfections are not a major problem in o
NMR quantum computer, as it is still easy to determine t
state of a spin. However, our computer is small, and
programs run on it are short~that is, they contain a smal
number of logic gates!; if more complex programs are to b
run on larger computers then these imperfections must
addressed.

The results of implementing the Deutsch quantum alg
rithm are shown in Fig. 6. In this case the result@ f (0)
% f(1)# can be read from the final state of spinI , while spin
S remains in stateu1&. As expected, spinI is in stateu0& for
the two constant functions~f 00 and f 11!, but in stateu1& for
the two balanced functions~f 01 and f 10!. Once again a num-
ber of imperfections are visible, though in this case th
appear to be most severe in the case ofU f 11

.

VI. SUMMARY

We have demonstrated that the isolated pair of1H nuclei
in partially deuterated cytosine can be used to implemen
two qubit NMR quantum computer. This computer can
used to run both classical algorithms and quantum al
rithms, such as that for solving Deutsch’s problem~distin-
guishing between constant and balanced functions!. This is
the first successful implementation of a quantum algorith
on any physical system.31–35

This result confirms that NMR shows great promise a
technology for the implementation of small quantum com
puters. Difficulties do exist, largely as a result of the lar
number of selective pulses involved in the implementation
quantum gates, but we are currently seeking ways to ov
come these problems. Even with the current level of error
should be possible to build a three qubit computer capable
implementing more complex logic gates and algorithms.

ACKNOWLEDGMENTS

We are indebted to R. H. Hansen~Clarendon Labora-
tory! for invaluable advice and assistance. We thank N. So

FIG. 6. Experimental implementation of a quantum algorithm to determ
f (0)% f (1) on a NMR quantum computer. In this case the result can be r
out on spinI , that is, using the signals on the left of the spectrum. F
details of the labeling, see Fig. 4. As expected, theI spin is inverted when
the function is balanced~f 01 or f 10!, but not when the function is constan
~f 00 or f 11!.
Downloaded 19 Oct 2009 to 129.132.128.136. Redistribution subject to A
r
e
e

e

-

y

a
e
-

a
-

f
r-
it
of

e

and J. Boyd~OCMS! for assistance with implementing th
NMR pulse sequences. We are grateful to A. Ekert~Claren-
don Laboratory! and R. Jozsa~University of Plymouth! for
helpful conversations. J.A.J. thanks C. M. Dobson~OCMS!
for his encouragement and support. This is a contribut
from the Oxford Centre for Molecular Sciences, which
supported by the UK EPSRC, BBSRC, and MRC. M
thanks CESG~U.K.! for their support.

1R. P. Feynman, Int. J. Theor. Phys.21, 467 ~1982!.
2D. Deutsch, Proc. R. Soc. London, Ser. A400, 97 ~1985!.
3S. Lloyd, Science273, 1073~1996!.
4A. Ekert and R. Jozsa, Rev. Mod. Phys.68, 733 ~1996!.
5P. W. Shor, inProceedings of the 35th Annual Symposium on the Fo
dations of Computer Science, edited by S. Goldwasser~IEEE Computer
Society, Los Alamitos, CA, 1994!.

6D. Deutsch, inQuantum Concepts in Space and Time, edited by R. Pen-
rose and C. J. Isham~Clarendon, Oxford, 1986!.

7D. Deutsch and R. Jozsa, Proc. R. Soc. London, Ser. A439, 553 ~1992!.
8R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. R. Soc. Lo
don, Ser. A454, 339 ~1998!.

9J. I. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091~1995!.
10C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Winelan

Phys. Rev. Lett.75, 4714~1995!.
11D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Natl. Acad. Sci. USA94,

1634 ~1997!.
12N. A. Gershenfeld and I. L. Chuang, Science275, 350 ~1997!.
13R. R. Ernst, G. Bodenhausen, and A. Wokaun,Principles of Nuclear

Magnetic Resonance in One and Two Dimensions~Oxford University
Press, Oxford, 1987!.

14See, for example, R. Laflamme, E. Knill, W. H. Zurek, P. Catasti, and
V. S. Mariappan,NMR GHZ, available at the xxx.1an1.gov e-Print archiv
as quant-ph/9709025.

15R. P. Feynman,Feynman Lectures on Computation, edited by A. J. G.
Hey and R. W. Allen~Addison-Wesley, Reading, MA, 1996!.

16C. H. Bennett, IBM J. Res. Dev.17, 525 ~1973!.
17A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,

Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A52, 3457
~1995!.

18D. Deutsch, Proc. R. Soc. London, Ser. A425, 73 ~1989!.
19O. W. SÖrensen, G. W. Eich, M. H. Levitt, G. Bodenhausen, and R.

Ernst, Prog. NMR Spectrosc.16, 163 ~1983!.
20R. Freeman,Spin Choreography~Spektrum, Oxford, 1997!.
21R. Freeman, T. A. Frenkiel, and M. H. Levitt, J. Magn. Reson.44, 409

~1981!.
22C. J. Bauer, R. Freeman, T. Frenkiel, J. Keeler, and A. J. Shaka, J. M

Reson.58, 442 ~1984!.
23H. Green, X. Wu, P. Xu, J. Friedrich, and R. Freeman, J. Magn. Re

81, 646 ~1989!.
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