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Synthesizing arbitrary quantum states in a
superconducting resonator
Max Hofheinz1, H. Wang1, M. Ansmann1, Radoslaw C. Bialczak1, Erik Lucero1, M. Neeley1, A. D. O’Connell1,
D. Sank1, J. Wenner1, John M. Martinis1 & A. N. Cleland1

The superposition principle is a fundamental tenet of quantum
mechanics. It allows a quantum system to be ‘in two places at the
same time’, because the quantum state of a physical system can
simultaneously include measurably different physical states. The
preparation and use of such superposed states forms the basis of
quantum computation and simulation1. The creation of complex
superpositions in harmonic systems (such as the motional state of
trapped ions2, microwave resonators3–5 or optical cavities6) has
presented a significant challenge because it cannot be achieved
with classical control signals. Here we demonstrate the prepara-
tion and measurement of arbitrary quantum states in an electro-
magnetic resonator, superposing states with different numbers of
photons in a completely controlled and deterministic manner. We
synthesize the states using a superconducting phase qubit to
phase-coherently pump photons into the resonator, making use
of an algorithm7 that generalizes a previously demonstrated
method of generating photon number (Fock) states in a
resonator8. We completely characterize the resonator quantum
state using Wigner tomography, which is equivalent to measuring
the resonator’s full density matrix.

The quantum state of a resonator is extraordinarily rich, with
infinitely many energy levels, of which each can have a non-zero
amplitude. However, this richness is difficult to access when driving
a resonator with a classical signal, as the two adjustable parameters of
an on-resonant drive, the amplitude and the phase, give very limited
control. Creating an arbitrary quantum state instead requires a non-
linear element and a control scheme with many parameters. Here we
demonstrate quantum state generation in a resonator by interposing
a highly nonlinear Josephson phase qubit9 between a superconduct-
ing resonator and a classical signal. A qubit4,5,10–14 has two quantum
degrees of freedom, the relative amplitude and phase of its ground jgæ
and excited jeæ energy eigenstates. This simplicity allows full
quantum control of a qubit with a classical signal15. By following a
sequence of steps developed for trapped ions2,7 (and later adapted to
charge qubits16), where each step involves creating a particular qubit
state and then having the qubit interact with the resonator for a
controlled time, we synthesize arbitrary states in the resonator. The
preparation is deterministic, unlike methods involving probabilistic
projective measurements17. After the preparation, we analyse the
resonator state using Wigner tomography18–22, mapping out the
Wigner quasi-probability distribution23,24, from which we extract
the resonator’s full density matrix.

The quantum circuit we used is shown in Fig. 1a. The phase qubit is
capacitively coupled to a superconducting coplanar waveguide res-
onator, and the circuit includes control lines for the qubit and res-
onator, and a qubit measurement circuit described elsewhere25. This
circuit is similar to that used previously to generate Fock states in a
resonator8; here, however, most of the superconducting wiring is

made of rhenium in place of aluminium, and we removed unneces-
sary dielectric, reducing dissipative elements in the circuit.

The qubit frequencyvq/2p can be externally adjusted, whereas the
resonator frequency vr/2p5 6.570GHz is fixed. This allows us to
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Figure 1 | Circuit diagram and one photon Rabi-swap oscillations between
qubit and resonator. a, The qubit (black) ismade from a Josephson junction
(cross) and a capacitor, biased through a shunting inductor. The qubit
detuningD is adjusted through a flux bias coil, and the qubit state is read out
by a three-Josephson-junction superconducting quantum interference
device (SQUID). The coplanar waveguide resonator (blue) has fixed
capacitive coupling V to the qubit, and small capacitors couple external
microwave signals Vq and Vr to the qubit and resonator. The device was
measured in a dilution refrigerator at 25mK. The qubit relaxation and
dephasing times were respectively T1,q< 650 ns and T2,q< 150 ns, and the
resonator relaxation time was T1,r< 3.5 ms with no measurable dephasing.
b, Schematic of Rabi-swap pulse sequence. The qubit starts in its ground
state, detuned at its typical off-resonance point by Doff/2p52463MHz<
225V/2p from the resonator. A resonant qubit microwave p-pulse brings
the qubit to its excited state | eæ, injecting one quantum of energy into the
system.A flux bias pulse reduces the qubit detuningD from the resonator for
a controlled time t, and the qubit state is thenmeasuredwith a current pulse.
c, Excited state probability Pe versus detuningD and interaction time t. Pe is
obtained by averaging 600 repetitions. d, Fourier transform of data in
c, showing the expected hyperbolic relation between detuning D and swap
frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2zD2

p .
2p (dotted line), and the expected fall-off in

probability (colour scale). Resonance D5 0 corresponds to lowest swap
frequency and maximum probability amplitude.
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describe the system with a Hamiltonian in the resonator rotating
frame, so that the resonator states have zero frequency:

H

B
~D tð Þszs{z

V

2
szaz

Vq tð Þ
2

szz
Vr tð Þ
2

a{
� �

zh:c: ð1Þ

Here s1 and s2 (a{ and a) are the qubit (resonator) raising and
lowering operators, and h.c. is the Hermitian conjugate of the terms
in parentheses. The first term is the qubit energy, which appears as the
qubit–resonator detuning D(t)5vq(t)2vr. The first term in the
parentheses gives the qubit–resonator interaction, proportional to
the fixed interaction strength V/2p5 19MHz, while the second
and third terms give the effect of the external microwave drive signals
applied to the qubit and resonator; these parametersVq(t) andVr(t)
are complex to account for amplitude and phase. All control signals
in equation (1) vary on a,2 ns timescale, long compared to 2p/vr, so
counter-rotating terms in equation (1) are neglected.

Although the coupling V is fixed, we control the qubit–resonator
interaction by adjusting the qubit frequency between two operating
points, one with qubit and resonator exactly on resonance (Don5 0),
the other with the qubit well off-resonance (jDoffj?V). On res-
onance, the coupling will produce an oscillation where a single
photon transfers between qubit and resonator with unit probability,
alternating between states with, say, the qubit in its ground state with
n photons in the resonator, jgæfl jnæ5 jg, næ, and the qubit in its
excited state with n2 1 photons in the resonator, je, n 2 1æ; this
occurs at the n-photon ‘Rabi-swap’ frequency

ffiffiffi
n

p
V. Off resonance,

the system oscillates at a higher frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nV2zD2

p
but with

reduced je, n2 1æ probability nV2/(nV21D2), 1. This detuning
dependence is shown in Fig. 1 for n5 1 photon and small detunings
jDj=V. At our typical off-resonance operating point Doff<225V,
the photon transfer probability is only 0.0016 n, so the coupling is
essentially turned off.

We determine from Fig. 1 the flux bias for on-resonance tuning
(D5 0) and the one-photon swap time. Using these parameters, we
can pump photons one at a time into the resonator by repeatedly
exciting the detuned qubit from jgæ to jeæ using a qubit microwave
p-pulse, followed by a controlled-time, on-resonance photon swap8,
where we scale the swap time for the nth photon by 1=

ffiffiffi
n

p
. Precise

scaling of this swap time is crucial for proper control, andwas verified
for up to 15 photons (see Supplementary Information).

Our goal is to synthesize arbitraryN-photon states in the resonator
with the qubit in its ground state, disentangled from the resonator.
Our target state for the coupled system is

yj i~ gj i6
XN
n~0

cn nj i ð2Þ

with complex amplitude cn for the nth Fock state. Law and Eberly7

showed that these states can be generated by sequentially exciting the
qubit into the proper superposition of jgæ and jeæ, and then perform-
ing a partial transfer to the resonator. As illustrated in Fig. 2, and
detailed in Table 1, a sequence generating the desired state can be
found by solving the time-reversed problem: starting with the desired
final state, we first transfer the amplitude of the highest occupied
resonator Fock state to the qubit, then remove the excitation from the
subsequently detuned qubit using a classical microwave signal, and
repeat until the ground state jg, 0æ is reached. The actual control
signals are sequenced in the normal (un-reversed) order to generate
the desired final state from the initial ground state. We note that the
Law and Eberly protocol7 assumes an adjustable phase for the qubit–
resonator couplingV, which equation (1) does not allow; instead, we
correct the relative phases of jg, næ and je, n2 1æ by adjusting the time
tn over which the qubit and resonator are detuned.

To calibrate the actual microwave signals needed to implement this
sequence, it is impractical to individually tune each sequence step,
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Figure 2 | Sequence to synthesize an arbitrary resonator state.
a, Qubit–resonator energy ladder. Levels are depicted by dotted and solid
lines when tuned (D5 0) and detuned, respectively; qubit states are in black,
resonator states are in blue. Three types of operations (in red) are used in
state preparation: qubit drive operations Qn, indicated by undulating lines;
qubit–resonator swap operations Sn, indicated by straight horizontal lines;
and phase rotations of the qubit state Zn, indicated by circles. Each operation
affects all the levels in the diagram. b, Microwave pulse sequence. The qubit
and resonator are traced in black and blue, respectively, with qubit
operations in red. The sequence is computed in reverse order by emptying
energy levels from top to bottom. Todescend the first step of the ladder in a, a
swapoperationSN transfers thehighest occupied resonator state to thequbit,
| g,NæR | e,N2 1æ. This operation also performs incomplete transfers on all
the lower-lying states, as do the succeeding steps. A qubit microwave drive
QN then transfers all the population of | e,N2 1æ to | g,N2 1æ (in general this
step is not a p-pulse as | g,N2 1æ is not completely emptied by pulse SN). For
the second step down the ladder, a rotationZN21 first adjusts the phase of the
qubit excited state | eæ relative to the ground state | gæ. The succeeding swap
pulse SN21 can then move the entire population of | g, N2 1æ to | e, N2 2æ.
This sequence is repeated N times until the ground state | g, 0æ is reached.
Steps Qn are performed with resonant qubit microwave pulses of amplitude
qn, swaps Sn achieved by bringing the qubit and resonator on resonance for
time tn, and phase rotations Zn completed by adjusting the detuning time tn;
see Table 1 for a detailed example. After state preparation, tomographic read-
out is performed: a displacement D(2a) of the resonator is performed by a
microwave pulse R to the resonator, then the resonator state is probed by a
qubit–resonator swap S for a variable interaction time t, and finally the qubit
statemeasured by themeasurement pulseM. c, Plot of the qubit excited state
probability Pe versus interaction time t for the resonator states
|yaæ5 | 1æ1 | 3æ (blue) and |ybæ5 | 1æ1 i | 3æ (red), taken with a5 0. We
clearly observe oscillations at the | 1æ and |3æ Fock state frequencies. Nearly
identical traces for |yaæ and |ybæ indicate the same photon number
probability distribution, as expected. d, Photon number distributions for
|yaæ (blue) and |ybæ (red). Both states are equal superpositions of | 1æ and |3æ
but the phase information that distinguishes the two states is lost.

Table 1 | Sequence to generate the resonator state |yæ5 | 1æ1 i | 3æ
Sequence of states,
operations

Operational
parameter

System state,
parameter value

|yæ |gæ(0.707 | 1æ10.707i | 3æ)
S3 t3V 1.81
Q3 q3 3.14

|y2æ |gæ(20.557i | 0æ10.707 |2æ)10.436 | eæ | 1æ
Z2 t2D 4.71
S2 t2V 1.44
Q2 q2 22.09 2 2.34i

|y1æ (0.55320.62i) |gæ | 1æ2(0.37110.416i) | eæ | 0æ
Z1 t1D 3.26
S1 t1V 1.96
Q1 q1 22.7121.59i

|y0æ (0.19720.98i) |gæ | 0æ

This resonator state is used for the measurements described in Fig. 2. The sequence is
computed top to bottom, but applied bottom to top. The area and phase for the nth qubit drive
Qn is qn~

Ð
Vq tð ÞeiDoff tdt (t50 being the time when the qubit is tuned into resonance directly

after the step Qn), the time on-resonance for the qubit–resonator swap operation Sn is tn, and
the time off-resonance (mod 2p/D) for the phase rotation Zn is tn.We note that the initial state
|y0æ differs by an overall phase factor from the ground state | gæ | 0æ, but this is not detectable.
State descriptions are shown bold; operations are not in bold.
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because the intermediate states are quite complex and measuring
them is time-consuming. Instead we perform careful calibrations of
the experimental system independent of the particular state prepara-
tion (see Supplementary Information).

An initial check of the outcome of the preparation is to determine
if the qubit ends up in the ground state jgæ, as desired. We find that
this holds with a probability typically greater than 80%, the remain-
ing 20% being compatible with decoherence during the preparation
sequence (see Supplementary Information).

With the qubit near its ground state and not entangled with the
resonator, we can use the qubit to measure the resonator state. By
bringing the qubit and resonator into resonance for a variable time t
and subsequently measuring the probability Pe for the qubit excited
state,we candetermine8 then-photonprobabilitiesPn5 jcnj2, correct-
ing for measurement fidelity and initial qubit state probability (see
Supplementary Information). In Fig. 2c we compare Pe(t) for the
experimentally prepared states jyaæ5 j1æ1 j3æ and jybæ5 j1æ1 ij3æ,
showing the expected superposed oscillations corresponding to the j1æ
and j3æ Fock states. This measurement however only yields the
probabilities Pn: the relative phases of the Fock states are lost, so the
states jyaæ and jybæ cannot be distinguished.

To measure the complex amplitudes cn, we need to probe the
interference between the superposed Fock states. This may be done
using Wigner tomography19,21,24, which maps out the Wigner quasi-
probability distributionW(a) as a function of the phase space ampli-
tude a of the resonator (see Supplementary Information). Wigner
tomography is performed by following the functional definition:

W að Þ~ 2

p
yh jD{ {að ÞP D {að Þ yj i ð3Þ

The resonator state jyæ is first displaced by the operator D(2a),
implemented with a microwave drive pulse {a~ 1=2ð Þ Ð Vr tð Þdt :
The photon number probabilities Pn are then measured and finally

the parity ÆPæ5
P

n(21)nPn evaluated. The corresponding pulse
sequence is depicted in Fig. 2b.

Calculated and measured Wigner functions are shown in Fig. 3 top
and middle rows, respectively, for the resonator states j0æ1 jNæ, with
N5 1 to 5. The structures of theWigner functions match well, includ-
ing fine details, indicating that the superposed states are created and
measured accurately. The density matrices for each state are also
calculated (Fig. 3 bottom row; see Supplementary Information) and
are as expected. The Wigner function of non-classical states has been
measured previously, either calculated via an inverse Radon trans-
form18,26,27, or measured at enough points to fit the density matrix3,28,
from which theWigner function is reconstructed. The high resolution
direct mapping of the Wigner function used here is an important
verification of our state preparation. The good agreement in shape
shows that very pure superpositions of j0æ and jNæ have been created.
Slight deviations in amplitude canbedue to small errors in the read-out
process, the relative amplitudes of the j0æ and jNæ states, or statistical
mixtures with other Fock states.

The data in Fig. 3 do not demonstrate phase control between Fock
states, as a change in the relative phase of a two-state superposition
only rotates the Wigner function. The phase accuracy may be
robustly demonstrated by preparing states with a superposition of
three Fock states, as changing the phase of one state then changes the
shape of the Wigner function. Figure 4 shows Wigner tomography
for a superposition of the j0æ, j3æ and j6æ Fock states, where the phase
of the j3æ state has been changed in each of the five panels. The shape
of the calculated and measured Wigner functions (Fig. 4 top and
middle rows, respectively) again agree, including small details, indi-
cating that precise phase control has been achieved. The calculated
and measured density matrices (Fig. 4 bottom row) also match well.

In conclusion, we have generated andmeasured arbitrary superposi-
tions of resonator quantum states. State preparation is deterministic
and ‘on-demand’, requiring no projective measurements, and limited
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Figure 3 | Wigner tomography of superpositions of resonator Fock states
|0æ1 |Næ. The top row displays the theoretical form of the Wigner function
W(a) as a function of the complex resonator amplitude a in photon number
units, for statesN5 1 to 5. ThemeasuredWigner functions are shown in the
middle row, with the colour scale bar on the far right. Negative quasi-
probabilities are clearly measured. The experimental Wigner functions have
been rotated to match theory, compensating for a phase delay between the
qubit and resonator microwave lines; the measured area is bounded by a
dotted white line. The bottom row displays the calculated (grey) and
measured (black) values for the resonator density matrix r, projected onto

the number states rmn5 Æm |r |næ. The magnitude and phase of rmn is
represented by the length and direction of an arrow in the complex plane (for
scale, see key on right). The fidelities F~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yh jr yj ip

between the desired
states |yæ and the measured density matrices r are, from left to right,
F5 0.92, 0.89, 0.88, 0.94 and 0.91. Each of the 51 by 51 pixels (61 by 61 for
N5 5) in theWigner function represents a local measurement. The value of
W(a) is calculated at each pixel from 50 (41 for N5 4 and 5) interaction
times t, each repeated 900 times to give Pe(t). This direct mapping of the
Wigner function takes ,108 measurements or ,5 h.
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to about ten photons, mainly by decoherence29. The accuracy of the
prepared states demonstrates that a qubit, when controlled with high
fidelity, is ideally suited for synthesizing and measuring arbitrary
quantum states of light.
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Supplementary Information

1. VOODOO CAT STATE

In the main article we display the measured and calcu-
lated Wigner functions for the resonator states |0〉+ |N〉
and for the states |1〉 + exp(ikπ/8)|3〉+ |6〉, k = 0 to 4.
In Fig. S1 we display the “Voodoo cat” state, which in-
volves Fock states as high as |9〉, fully demonstrating the
range of states we can currently prepare.

2. WIGNER TOMOGRAPHY AND DENSITY MATRIX

The Wigner function W (α) and density matrix ρ are
related via the trace

W (α) =
2

π
Tr (D(−α)ρD(α)Π) . (4)

To measure the Wigner function, we first prepare the
resonator state, as given by the density matrix ρ.
During state analysis, microwaves drive the resonator
and coherently displace the resonator state by −α =
(1/2)

∫
Ωr(t)dt, as described by the operator D(−α) =

D†(α) = exp(α∗a − αa†). For the displaced resonator
state ρ′ = D(−α)ρD(α), we determine the diagonal ele-
ments ρ′nn by measuring Pe(τ) during a swap interaction8

(see below). As the Fock states are eigenstates of the par-
ity operator Π with eigenvalues 1 (-1) for even (odd) Fock
states, the Wigner function can simply be calculated as

W (α) = (2/π)
∑

n

(−1)nρ′nn(−α). (5)

We note that the Wigner function can also be calcu-
lated directly from the time trace Pe(τ) via a Fresnel
transform30, requiring only a short time scan, but yield-
ing slightly less precise results in our case. The parity
can also be measured directly in the dispersive limit24,
obviating the time scan, but the dispersive regime is in-
compatible with the parameters we need for state prepa-
ration.

The amplitude scale and the phase of the microwave
pulse α are calibrated by a best fit between the measured
and calculated Wigner distributions. Small variations
(∼ 5 %) in the scale calibration were found for the various
states measured here, including the coherent state, and
thus an average was used. The magnitude of the scale
factor is in good agreement with the attenuation of the
microwave line and its coupling capacitor.

The density matrix can be calculated from the Wigner
function by inverting Eq. (4). However, to make full use
of the measured data, we instead calculate the density
matrix ρ directly from the full set of measured photon

number probabilities28 by solving the set of linear equa-
tions

ρ′nn(αm) = 〈n|D(−αm)ρD(αm)|n〉 =
∑
j,i

Mnmjiρji,

(6)
one for each extracted photon number n and one for each
measured displacement αm. The matrix

Mnmji = 〈j|D(αm)|n〉∗ 〈i|D(αm)|n〉 , (7)

is calculated by expanding the displacement operator
D(α) = exp(αa† − α∗a) in the Fock basis:

〈p|D(α)|q〉 = e−|α|
2/2

√
p!q!

min{p,q}∑
k=0

α(p−k)(−α∗)(q−k)

k!(p− k)!(q − k)!
.

(8)
We solve the largely overdetermined linear system of
Eq. (6) by least-squares while restricting ρ to be hermi-
tian. Due to noise, ρ can have small negative eigenvalues.
Therefore we diagonalise ρ, set the unphysical negative
eigenvalues to zero, and then transform back to the Fock
basis. Finally we normalise ρ.

3. PHOTON NUMBER READOUT

At the end of the state preparation sequence for the
resonator, the qubit is ideally in its ground state. We ver-
ify this by performing state tomography of the qubit15,
yielding a qubit density matrix that is very close to the
ground state. Typically, the off-diagonal elements of the
density matrix are very small, but the excited state prob-
ability is not zero, corresponding to a Bloch vector point-
ing close to the |g〉 state: For the state generation shown
in Fig. 4, the angle θ between the Bloch vector and |g〉 is
always smaller than 5◦. For the states described in Fig. 3,
the angles are from left to right 15◦, 3◦, 13◦, 4◦, and 9◦,
due to less precise tune-up of the sequences for some of
the states. The length of the Bloch vector is close to 0.8 in
Fig. 4 and slightly larger in Fig. 3. This decrease in am-
plitude could be due to errors in the preparation sequence
that leave the qubit and resonator somewhat entangled.
However, we attribute the reduction in visibility mostly
to decoherence: The preparation sequences for the states
in Fig. 4 take approximately 200ns, a time slightly longer
than the Ramsey coherence time T2 = 150ns of the qubit.
This implies that when the qubit is brought into an equal
superposition of |g〉 and |e〉 and left there for a time of
200ns (worst case), the length of the Bloch vector would
be reduced to 0.25. The qubit decoherence is actually less
than this because the state is typically not in an equal
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Figure S1 | Wigner tomography of a “Voodoo cat” state. Left panel is theory, middle panel is experiment, and right panel is
the comparison of the density matrices, as in the main article. This “Voodoo cat” state is an equal superposition of coherent
states |α = 2〉 (“alive”), |α = 2e2πi/3〉 (“dead”) and |α = 2e4πi/3〉 (“zombie”). The state can be expanded in the Fock basis as∑

n=0,3,6,9...
(2n/

√
n!)|n〉. For the experimental realisation we have truncated the expansion at n = 9. Theory and experiment

match well (fidelity F = 0.83), indicating that states up to nine photons can be created accurately.

superposition of |g〉 and |e〉. In addition, the qubit fre-
quency is partially stabilised when it is interacting with
the resonator.

Because the qubit is only weakly entangled with the
resonator, we can read out the resonator state with the
qubit. In doing so we must account for a reduction in the
readout visibility due to the reduced length of the qubit
Bloch vector after the preparation sequence.

We perform photon number readout on the resonator

by bringing the qubit on resonance (Δ = 0) for a variable
time and then measuring its excited state probability Pe.
With the qubit on resonance and no drive signals, all
terms in Eq. (1) vanish except for the interaction. If the
qubit-resonator state at the beginning of this resonant
interaction is described by the system density matrix ρ̃,
the probability to measure the qubit in the excited state
after time τ is

Pe(τ) =
1

2

(
1− ρ̃(g,0),(g,0) −

∞∑
n=1

(
(ρ̃(g,n),(g,n) − ρ̃(e,n−1),(e,n−1)) cos(

√
nΩτ) + 2Im(ρ̃(e,n−1),(g,n)) sin(

√
nΩτ)

))
. (9)

The qubit is mostly disentangled from the resonator and
nearly in the ground state, and thus we can neglect the
last two terms of Eq. (9), simplifying this relation to

Pe(τ) ≈ 1

2

(
1− Pg

∞∑
n=0

Pn cos(
√

nΩτ)

)
, (10)

where Pg is the probability for the qubit to start in its
ground state and Pn = ρnn are the diagonal elements of
the resonator density matrix. The probabilities Pn may
now be extracted from the measured time evolution Pe(τ)
by performing a least-squares fit of the data with cosine
oscillations at the various frequencies

√
nΩ.

We measure the Rabi coupling frequencies
√

nΩ by
driving the resonator with a coherent microwave pulse,
generating a coherent state, then measuring Pe(τ).
Fourier transforms of Pe(τ), taken for a range of drive

amplitudes, give sharp peaks at frequencies
√

nΩ that
are used for calibration.

With Pg and
√

nΩ already determined, calculating Pn

from Eq. (10) becomes a linear least squares fit, which
yields stable and robust results.

In our earlier experiment8, decay of resonator states
during measurement required the introduction of visibil-
ity factors. Because coherence times are longer here, vis-
ibility factors would be greater than 95% and are not
absolutely required to correct for the decay of the Fock
states during measurement. Nevertheless, the precision
of the photon number analysis was improved by includ-
ing decoherence into the calculation of Pe(τ). We nu-
merically solve the Lindblad master equation31 for the
qubit coupled to Fock states, including the same Hamil-
tonian evolution as Eq. (1) but with the relaxation times
T1,r = 3.5μs for the resonator and T1,q = 650ns for the
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qubit and using the dephasing time Tφ,q = 300ns for the
qubit (resonator dephasing is much slower than 3.5μs
and not included in the model). Note that we use a larger
qubit dephasing time than measured for the qubit alone,
which accounts for the stabilising effect of the resonator
on the qubit. As we do not know of any theory precisely
predicting this stabilising effect, the qubit dephasing pa-
rameter was adjusted to best match the observed time
evolution.

Although we typically fit for photon numbers up to
nfit = 15, the results are significant only up to nmax = 10.
We fit more photons than needed because the oscillations
from Pn are not orthogonal, so Pn from the highest n ab-
sorbs some probability from non-fitted photon numbers.

4. PULSE CALIBRATION

As illustrated in Table 1 in the main article, the inter-
mediate states during state generation are quite complex.
This complexity discourages the measurement of interme-
diate states to tune the sequences. Instead, we carefully
calibrate the fundamental operations, the single qubit
Rabi pulse, the qubit-resonator photon swap, and the
qubit-resonator phase accumulation, thus obviating the
need to tune up individual sequences. The calibrations of
the microwave electronics described here are fully auto-
mated. The qubit calibrations are semi-automated and
require standard adjustments of the bias and read-out,
which are not detailed here.

4.1. Calibration of the microwave circuitry

We control the qubit using flux bias and microwave
pulses. The flux bias is applied via two separate signal
lines, one heavily low-pass filtered but weakly attenuated
allowing large flux bias excursions at low speed, the other
unfiltered but heavily attenuated allowing small excur-
sions at high rates. The lines are combined in the ex-
perimental cryostat at a custom inductive bias-tee just
outside of the sample mount. This summed current in-
ductively couples magnetic flux to the qubit. The mi-
crowave line has two broadband (20GHz) 20 dB attenu-
ators placed at 4 K and the mixing chamber and capaci-
tively couples current to the qubit.

4.1.1. Slow flux bias

The slow flux-bias waveform is generated by a custom
low-speed and high-accuracy digital to analog converter
(DAC) based on the MAX54232. For low noise perfor-
mance, its digital inputs and clock are held constant dur-
ing qubit operation.

4.1.2. Fast flux bias

The fast flux-bias waveform is generated by custom
DAC electronics32 based on the AD9736, which gives
14 bit resolution at a 1 GHz sampling rate. Its two differ-
ential outputs are sent through separate Gaussian low-
pass filters32 with a 3 dB roll-off frequency of 200MHz,
and then to a differential amplifier (THS4509) for low
distortion amplification and conversion to a single-ended
output. To correct for imperfections in this electron-
ics chain, we first generate a step-edge output from the
DAC and measure with a sampling oscilloscope the out-
put waveform. Using de-convolution techniques, we then
digitally correct any desired waveform with the measured
response of the step-edge.

The 200MHz low-pass filters considerably suppress sig-
nals close to the DAC Nyquist frequency of 500MHz.
The de-convolution correction compensates for this sup-
pression and greatly amplifies signal components close
to the Nyquist frequency, causing various artifacts. We
add a software low-pass filter to prevent this amplifica-
tion of high frequency components, as well as ringing due
to a sharp cutoff at the Nyquist frequency. We found
that a Gaussian low-pass filter with a 3 dB frequency of
150MHz, worked well with our electronics chain.

This calibration from the sampling oscilloscope elimi-
nates all distortions outside the cryostat. Wiring imper-
fections inside the cryostat may also be measured and
corrected by using the qubit as a sampling oscilloscope.
We use the flux-bias dependence of the qubit transition
frequency to measure how the actual flux bias evolves in
time: We first tune a 8 ns FWHM resonant microwave π-
pulse in amplitude and frequency to yield a high fidelity
|g〉 → |e〉 qubit transition (see below). We then add a
1 μs flux-bias pulse just before the microwave pulse. The
flux waveform is much longer than the ∼ 100 ns timescale
over which imperfections are observed, so we only con-
sider the second (falling) flank of the waveform. In the
absence of imperfections, the flux bias following the test
waveform will settle to its pre-waveform value, and the
microwave swap pulse will be precisely resonant with the
|g〉 → |e〉 transition. In actuality, we find that the qubit
frequency is slightly de-tuned, so the π-pulse fidelity is
reduced. We then add a flux bias offset to bring the qubit
back on resonance and return the fidelity of the π-pulse
to its original value. By scanning flux offset and timing,
we can map out the response of the qubit to the flux
bias step. We then correct for this response in the same
way as for the response function measured with the os-
cilloscope. Because this method has only a limited time
resolution due to the finite length of the microwave pulse,
we correct for fast distortions outside the cryostat.

doi: 10.1038/nature08005 SUPPLEMENTARY INFORMATION

www.nature.com/nature 3



4.1.3. Microwave drive

For the microwave drive for qubit and resonator we use
a single microwave source (Anritsu 68369A/NV), modu-
lated by IQ mixers (Marki IQ0307LXP). The I and Q
channels of each mixer are driven by two DAC outputs
identical to the fast flux bias. The mixers generate single-
sideband microwaves that can vary in frequency, phase,
and amplitude. We phase-lock all five DAC channels to
an external 10MHz clock, and digital communication be-
tween the DACs ensures that the waveforms are synchro-
nised with each other and the microwave source. We per-
form 3 types of calibrations for the microwave signals:

DAC zero adjustment ensures that the IQ mixer output
can be turned off precisely, eliminating bleed-through of
the carrier signal. In principle, a small magnitude of
carrier leakage is not a problem because, as we use side-
band mixing, the carrier frequency is typically not reso-
nant with the qubit or resonator. However, we typically
place the carrier frequency between qubit and resonator
frequency. Since the qubit is swept through the carrier
frequency each time it is tuned into resonance with the
resonator, carrier leakage could slightly perturb the qubit
state. To calibrate the I and Q DAC values needed to zero
out the mixer, we measure the mixer output with a spec-
trum analyser in a very narrow frequency band around
the carrier frequency. A simple search allows both I and
Q to be zeroed: We first fix the Q channel DAC and mea-
sure the power for 3 different I DAC values, finding the
minimum from a parabolic fit. We then fix this I value
and measure the power for three Q values, finding the
best Q value in the same way. This sequence is repeated
over increasingly narrow ranges until the resolution of the
DAC is reached. We typically find carrier on/off ratios of
> 70 dB. We also find DAC values for zero are strongly
dependent on carrier frequency.

Sideband mixing generates a shift Δω in the carrier fre-
quency ω by applying a signal of frequency Δω to the
I and Q ports of the mixer. A single sideband is gener-
ated when the signal to port Q is phase shifted by π/2
with respect to port I. IQ mixers are imperfect, and de-
viations exist in both the amplitude sensitivities and the
relative phase, which gives rise to an opposite frequency
sideband at −Δω. We cancel this undesired signal by
adding to the digital I and Q waveforms a compensat-
ing signal of adjustable amplitude and phase at −Δω.
To adjust this compensating signal, we measure the un-
desirable sideband signal with a spectrum analyser and
adjust the real and imaginary part of the compensation
to achieve an absolute minimum, with the same search
pattern as for zeroing of the DACs. We find the compen-
sation depends both on the carrier frequency ω and the
sideband frequency Δω.

Deconvolution calibration is similar to that performed
for the flux bias signal. Here, we measure the pulse re-
sponse at microwave frequencies. After calibrating the

DAC zero and sideband mixing, we apply a 1 ns impulse
to port I and measure the output of the IQ mixer with
a sampling oscilloscope. The impulse response is then
obtained by numerically demodulating the carrier fre-
quency. The same measurement is then repeated for port
Q. As this calibration is slow, it is performed only for a
single carrier frequency, typically 6 GHz. This simple cal-
ibration is sufficient because the microwave signals do not
have stringent requirements on the pulse shape. We find
precise calibration of the sideband mixing is of greater
importance.

4.2. Qubit microwave pulses

When microwave pulses are used to generate qubit
transitions |g〉 ↔ |e〉, excitations to higher energy lev-
els must be avoided, in particular the next higher eigen-
state |2〉. The |2〉 ↔ |e〉 transition frequency is typi-
cally 200MHz lower than |e〉 ↔ |g〉 due to the limited
non-linearity of the phase qubit. Microwave pulses for
|g〉 ↔ |e〉 therefore need to have low spectral compo-
nent at the |e〉 ↔ |2〉 transition frequency, so the pulses
must be sufficiently long and accurately shaped. We pro-
gram the pulses to have Gaussian envelopes with 8 ns
FWHM, which were measured to yield negligible popu-
lation (<∼ 10−4) of the |2〉 state33.

We calibrate single qubit Rabi pulses with the |g〉 → |e〉
transition, which corresponds to a rotation π on the
Bloch sphere. For this calibration, we maximise the
measured probability Pe by adjusting the amplitude and
frequency of the microwaves, as described in a previous
experiment33 that obtained a gate fidelity of 98%. For
Bloch sphere rotations with smaller angles, we simply
scale the pulse amplitude. Nonlinearities in the DAC
and from the AC Stark effect generate errors of less than
2 % in the rotation angle.

4.3. On-resonance tuning

We typically de-tune the qubit by ≈ 500MHz below
the resonator frequency for a qubit-resonator coupling
of Ω/2π ≈ 20MHz. By operating below the resonator
frequency, the qubit is not swept through this resonance
when measured and higher level transitions of the qubit
do not cross the resonator frequency. To calibrate the
flux bias pulse that tunes the qubit into resonance with
the resonator, we prepare the qubit in the |e〉 state using
a microwave Rabi pulse (see above), apply a flux bias
tuning pulse with a variable amplitude and duration, and
then measure the excited state probability Pe. Close to
resonance, a single photon is swapped between the qubit
and resonator at the frequency

Ω′ =
√

Ω2 + Δ2 (11)
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which equals the coupling strength Ω when the qubit and
resonator are on resonance (Δ = 0). The resonance con-
dition is precisely measured by varying the tuning pulse
amplitude and duration τ , mapping out Pe as shown in
Fig. 2 of the article. We then Fourier transform Pe(τ) for
different flux biases, and fit the maxima of the Fourier
transform to Eq. (11) to find the flux bias amplitude that
gives the minimum swap frequency. This fit is shown in
Fig. 2d of the article.

4.4. Swap pulse calibration

With the magnitude of the flux bias pulse determined
from the previous calibration step, we next precisely ad-
just the length of the swap pulse so that the photon is
completely transferred from the qubit to the resonator.
We optimise transfer by minimising the probability Pe of
finding the qubit in its excited state after the transfer.

The shape of the rising and falling edges of the flux
bias pulses is defined by the 150MHz numerical Gaussian
low-pass filter (see section 4.4.1), and is error-function
shaped with a 10% to 90% rise time of 2.3 ns. The finite
duration of the pulse rise and fall time, during which
the qubit is approaching resonance while interacting with
the resonator, limits the fidelity of the photon transfer.
To compensate for this effect, we add a Gaussian-shaped
overshoot to the beginning and end of the pulse, bringing
the qubit frequency slightly past the resonator frequency.
The Gaussian is centred at the step edge and its FWHM
of 2.1 ns is also defined by the numerical low-pass filter.
The pulse duration and overshoot height are adjusted
alternatingly several times to reach the global minimum
in Pe.

Once the transfer of the first photon is optimised, we
repeat the procedure for the second photon: A microwave
Rabi pulse is added immediately after the first swap pulse
bringing the qubit into the |e〉 state, and then the swap
pulse is optimised for minimum Pe. We typically repeat
this optimisation procedure for up to six photons, which
represents generation of Fock states in the resonator. The
amplitude of the optimal overshoot only depends weakly
on photon number. As calibration cannot depend on pho-
ton number for arbitrary state generation, we average the
overshoot and apply this value for all the swap pulses.
Using the average overshoot, we then repeat the calibra-
tion procedure for only the pulse duration, finding swap
times for up to 15 photons.

We use these swap times to calibrate the swap oper-
ation for arbitrary state generation. Since the coupling
strength scales as

√
n, where n is the photon number,

the n-photon swap time will result in a swap angle of
φ = π/

√
n when applied to the ground state of the res-

onator. Thus, when plotted versus 1/
√

n, as in Fig. S2,
all swap times should fall on a line, whose slope and in-
tercept give the calibration for the swap operation.
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Figure S2 | Calibration of the photon swap operation from
the measurement of optimum swap time versus 1/

√
n. The

optimum time for the n-photon swap pulse is measured by
maximising state transfer to the resonator, resulting in the
generation of Fock states. Because coupling strength scales
as

√
n, the data should fall on a line. The slope and offset

time of this line is used to calibrate the swap operation for
arbitrary state generation.
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Figure S3 | Ramsey interferometry between qubit and res-

onator. The sequence consists of a qubit π pulse followed
by two half-swaps separated by a variable delay time t, then
measurement of the qubit state. Delay times t only need to
be scanned around 20 ns, which are relevant for the arbitrary
state pulse sequence.

4.5. Phase accumulation rate

When the qubit is de-tuned from the resonator, the
|e, n〉 states accumulate phase with respect to the |g, n +
1〉 states at a rate Δoff = ωq−ωr, roughly−2π×500MHz.
For generating states more complex than Fock states, this
phase must be taken into account. To calibrate phase ac-
cumulation, Ramsey interferometry is used between the
qubit and resonator: We first prepare the qubit in the |e〉
state with a swap pulse, and then perform a half-swap
to the resonator. After a variable time t we perform a
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second half-swap, and measure Pe as a function of t. As
seen in Fig. S3, the probability oscillates sinusoidally at
the phase accumulation rate. The two half-swaps add
to a full swap, yielding a minimum Pe, when the delay
time t yields a phase accumulation of a multiple of 2π.
For phase accumulation of π, the second half-swap un-
does the first half-swap, yielding a maximum value for
Pe. The oscillation allows a precise calibration of phase
accumulation when the qubit and resonator are de-tuned.

Note that the timing of the pulses in Fig. S3 require
nearly continuous variation of t. The pulse edges can be
adjusted for a time much less than the 1 ns DAC update
time because the step edges are generated from several
DAC points. As illustrated in Fig. S3, we can adjust and
control the step edges in the 10− 50 ps range.
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