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equation for the disk’s gravitational potential.
The growth of m ¼ 1 modes typically results in a shift in the

centre of mass of the disk away from its geometric centre. The
central protostar then responds in this model by shifting in the
opposite direction by an amount sufficient to preserve the exact
location of the centre of mass of the system. The shifting position of
the central protostar then feeds back to the disk through the star’s
gravitational acceleration.

Figure 1 shows the time evolution of the location of the protostar
with respect to the centre of mass of the system. The protostar’s
wobble increases dramatically as the spiral arms grow in amplitude
and form two GGPPs with masses of ,0.01 M(, orbiting at ,5 AU

and ,10 AU. The protostar’s displacement from the centre of mass is
minimized when the GGPPs are aligned on opposite sides of the
protostar and maximized when they are on the same side (Fig. 1b).
The non-axisymmetric distribution of the remainder of the disk also
contributes significantly to the total protostellar wobble.

Figure 2 shows that following an initial phase of approximately
exponential growth of the m ¼ 1 perturbation, the mode saturates
at a level that results in a protostellar wobble with an amplitude of
,0.1 AU. This wobble is modulated by beating between the orbital
frequencies of the two GGPPs (with periods of ,9 yr and ,18 yr),
yielding a period of ,18 yr.

The masses of the giant planets eventually formed by these
,0.01 M( GGPPs are uncertain, as considerable evolution remains
before reaching planetary densities. In addition, future disk
evolution models may well show that GGPPs can form in less-
massive disks, leading to lower-mass GGPPs and smaller proto-
stellar wobbles. Nevertheless, the model suggests that GGPP for-
mation can lead to astrometric wobbles of the order of 0.1 AU in
solar-mass YSOs. At a distance of 140 pc (for example, the Taurus
star-forming region), this corresponds to an angular displacement
of ,0.7 milliarcsec (0.7 mas), measurable with the precision of
0.1 mas per night attained by G. Gatewood’s astrometric photo-
meter at the Keck Observatory21.

The growth of spiral arms before GGPP formation would
produce a signal about 10 times smaller (Fig. 2), ,70 microarcsec
(70 mas). This signal would be readily detectable by the Keck
Interferometer22 or by the Space Interferometry Mission23, which
are expected to have astrometric accuracies close to ,10 mas and
,1 mas, respectively. However, detecting the growth of spiral arms
would require fortuitous timing, because of the brief duration of

this phase, requiring the observation of an even larger ensemble of
young stars.

Searching for evidence of GGPP formation around YSOs would
provide a critical test of our understanding of giant-planet forma-
tion, and should clarify the relationship between giant planets and
circumstellar disks, as well as any brown-dwarf protostars that
would also be discovered by such a search. M
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Figure 2 Time evolution of the protostellar wobble, given as the radial

displacement r from the centre of mass of the system. The protostellar wobble

grows roughly exponentially in time as the spiral arms grow in amplitude. After

,500 yr, two GGPPs form, and the amplitude of the wobble is modulated by

beating between the orbital frequencies of the two GGPPs. A second model,

which differed only in havingadditionalm ¼ 2; 3 and 4 initial density perturbations,

behaved very similarly. (See text for details of m.)
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Quantum computers1–5 can in principle exploit quantum-
mechanical effects to perform computations (such as factoring
large numbers or searching an unsorted database) more rapidly
than classical computers1,2,6–8. But noise, loss of coherence, and
manufacturing problems make constructing large-scale quantum
computers difficult9–13. Although ion traps and optical cavities
offer promising experimental approaches14,15, no quantum algo-
rithm has yet been implemented with these systems. Here we
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report the experimental realization of a quantum algorithm using
a bulk nuclear magnetic resonance technique16–18, in which the
nuclear spins act as ‘quantum bits’19. The nuclear spins are
particularly suited to this role because of their natural isolation
from the environment. Our simple quantum computer solves a
purely mathematical problem in fewer steps than is possible
classically, requiring fewer ‘function calls’ than a classical com-
puter to determine the global properties of an unknown function.

We implemented the simplest possible version of the Deutsch–
Jozsa (D-J) quantum algorithm6, which determines whether an
unknown function is constant or balanced. A constant function f(x)
that transforms N bits of information to one bit either has output
f ðxÞ ¼ 0 for all x, or f ðxÞ ¼ 1 for all x. A balanced function has
f ðxÞ ¼ 0 for exactly half of its inputs, and f ðxÞ ¼ 1 for the remaining
inputs. To determine with certainty whether a function is constant
or balanced on a deterministic classical computer requires up to
2N 2 1 þ 1 function calls: even if half of the inputs have been
examined and f ðxÞ ¼ 0 has been found for each, it cannot be
concluded with certainty that the function is constant. In contrast,
the D-J algorithm, as improved by Cleve et al.20 and by A. Tapp
(personal communication), allows a quantum computer to deter-
mine whether f (x) is constant or balanced using only one function
call.

The D-J algorithm is well illustrated by its simplest possible case,
when f is a function from one bit to one bit; this is the version that
we have realized (it is also the simplest instance of Simon’s
algorithm7). There are four possible functions fi, two of which are
constant, f 1ðxÞ ¼ 0, f 2ðxÞ ¼ 1, and two of which have an equal
number of 0 and 1 outputs: f 3ðxÞ ¼ x, f 4ðxÞ ¼ NOT x. To determine
whether such a function is constant or balanced is analogous to
determining whether a coin is fair (with a head on one side and a tail
on the other) or fake (heads on both sides). Classically, the coin is
examined twice, first on one side then on the other, to determine
whether it is fair or fake. The D-J algorithm exploits quantum
coherence to determine whether a quantum ‘coin’ is fair or fake
while looking at it only once. The algorithm requires one ‘input’
spin and one ‘work’ spin, and is schematically represented by the
quantum circuit shown in Fig. 1.

Experimentally, this quantum algorithm was implemented using
the nuclear spins of the 1H and 13C atoms in a carbon-13 labelled
chloroform molecule (CHCl3) as the input and work quantum bits
(‘qubits’). | 0〉 (| 1〉) describes the spin state aligned with (against)

an externally applied, strong static magnetic field B0 in the þẑ
direction. The reduced hamiltonian for this 2-spin system is
to an excellent approximation given by (~ ¼ 1)21: Ĥ ¼
2 qAÎzA 2 qBÎzB þ 2pJÎzAÎzB þ Ĥ env. The first two terms describe
the free precession of spin A (1H) and B (13C) about −B0 with
frequencies qA=2p < 500 MHz and qB=2p < 125 MHz. ÎzA is the
angular momentum operator in the þẑ direction for A. The third
term describes a scalar spin–spin coupling of the two spins of
J < 215 Hz. Ĥ env represents coupling to the environment, including
interactions with the chlorine nuclei, and also higher order terms
in the spin–spin coupling, which can be disregarded (as will be
described below).

The five theoretical steps of the quantum algorithm, (T0)–(T4),
were experimentally implemented as follows.
E0. An initial state is prepared with a 200 mM, 0.5 ml sample of
chloroform dissolved in d6-acetone, at room temperature and
standard pressure. The O(1018) molecules in this bulk sample can
be thought of as being independent single quantum computers, all
functioning simultaneously. The theoretically ideal result is
obtained when the spins in all the molecules start out in the 00
state—that is, all spins aligned in the þẑ direction. Because the
experiment is performed at room temperature, however, the initial
density matrix r for the thermally equilibrated system has popula-
tions diagðrÞ ¼ ½n00; n01; n10; n11ÿ in the 00, 01, 10 and 11 states,
respectively, where r is the density matrix, and ni are proportional to
e 2 Ei =kT =2N < ð1 2 Ei=kTÞ=2N , with Ei the energy of state i, and N ¼ 2
the number of qubits used in our experiment. A variety of tech-
niques exist to extract from this thermal state just the signal from
the molecules in the 00 state16,17; we adopted the method of
‘temporal averaging’22, which involves the summation of three
experiments in which the populations of the 01, 10 and 11 states
are cyclically permuted before performing the computation. The
essential observation is that ½n00; n01; n10; n11ÿþ [n00, n11, n01, n10] +
[n00, n10, n11, n01] = a[1, 1, 1, 1] + d[1, 0, 0, 0], where
a ¼ n01 þ n10 þ n11 is a background signal which is not detected,
and d ¼ 3n00 2 a is a deviation from the uniform background
whose signal behaves effectively like the desired pure quantum
state, j00〉. The permutations are performed using methods similar
to those used for the computation, described next. This technique
avoids the technical difficulties of detecting the signal from a single
nuclear spin, and allows a sample at room temperature, which
produces an easily detectable signal, to be used for quantum
computation.

Note that although this method requires f(x) to be evaluated
three times, it is actually not necessary. Although step (T0) stipu-
lates a pure initial state j00〉, the algorithm works equally well if the
input qubit is initially j1〉; furthermore, when the work qubit is
initially j1〉, it fails, and cannot distinguish constant from balanced
functions, but this does not interfere with other computers which
have worked. Thus, a thermal state is a good initial state for this
algorithm, and only one experiment needs to be done. Data from
both thermal and pure state inputs are presented below.
E1. Pulsed radiofrequency electromagnetic fields are applied to
transform the qubits as prescribed in (T1). These fields, oriented
in the x̂ 2 ŷ plane perpendicular to B0, selectively address either A or
B by oscillating at frequency qA or qB. Classically, a radiofrequency
pulse along ŷ (for example) rotates a spin about that axis by an angle
proportional to ,tP, the product of the pulse duration t and pulse
power P. In the ‘bar magnet’ picture, a p/2 pulse along ŷ (we shall
call this Y ) causes a ẑ oriented spin to be rotated by 908, onto x̂
(similarly, we shall let Ȳ denote p/2 rotations about −ŷ, and X
denote p/2 rotations about x̂, and so forth; subscripts will identify
which spin the operation acts upon). This description of the state is
classical in the sense that a bar magnet always has a definite
direction. In reality, however, a nuclear spin is a quantum object,
and instead of being aligned along x̂, it is actually in a superposition
of being up and down, ðj0〉 þ j1〉Þ=

���

2
p

. Likewise, a spin classically

Figure 1 Quantum circuit for performing the D-J algorithm. T0, start with both the

‘input’ and ‘work’ qubits (A and B) in the state j0〉; T1, perform the transformation

Y : j0〉 → ðj0〉 þ j1〉Þ=
���

2
p

, j1〉 → ð 2 j0〉 þ j1〉Þ=
���

2
p

, to A, and the inverse transformation

Ȳ to B, resulting in the state 1
2
S1

x¼0jx〉 ðj0〉 2 j1〉Þ. The input qubit in some quantum

sense registers both 0 and 1 at once. T2, call the function: apply f to A, and add the

result to B modulo 2. As long as the quantum logic operations needed to evaluate

f are carried out coherently, the work qubit now contains in some quantum sense

the outputs of f on all possible inputs, an effect that Deutsch termed ‘quantum

parallelism’1. The two qubits are now in the state 1
2
S1

x¼0jx〉 ðj0 þ fðxÞ〉 2

j1 þ fðxÞ〉Þ ¼ 1
2
S1

x¼0ð21〉fðxÞ
jx〉 ðj0〉 2 j1〉Þ. T3, perform the inverse of the transforma-

tions of (T1), thereby taking the qubits out of their superposition states. If f is

constant, then the factors (−1)f(x) are either all þ1 or all −1, and the result of the

transformation in this step is the state 6 j00〉. If f is balanced, then exactly half of

the factors (−1)f(x) are þ1 and half are −1, and the result of the transformation is the

state 6 j10〉. T4, read out A. If it is 0, then f is constant; if it is 1, then f is balanced.
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described as being along −x̂ is actually in the state ðj0〉 2 j1〉Þ=
���

2
p

.
(E1) thus consists of applying the two radiofrequency pulses YAȲB.
E2. The function y → y ! f ðxÞ is implemented using radiofre-
quency pulses and spin–spin interaction. Recall that spin A repre-
sents the input qubit x, and B the work qubit y where f stores its
output. f1 is implemented as t=2 2 XBXB 2 t=2 2 XBXB, to be read
from left to right, where t/2 represents a time interval of
1=4J < 1:163 ms, during which coupled spin evolution occurs.
Dashes are for readability only, and typical pulse lengths were 10–
15 ms. This is a well known refocusing23 pulse sequence which
performs the identity operation. f2 is t=2 2 XBXB 2 t=2, similar to
f1 but without the final pulses, so that B is inverted. f3 is
Y B 2 t 2 Ȳ BXB 2 Ȳ AX̄AYA, which implements a ‘controlled-NOT’
operation, in which B is inverted if, and only if, A is in the j1〉 state.
The naive ‘bar magnet’ picture can be used to get a feeling for how
this works in case the inputs are 00 or 10, for which the subsequence
Y B 2 t 2 XB suffices (note that after (E1), both spins are not just j0〉
or j1〉 but in a superposition of both, in which case the extra pulses of
f3 are necessary16). First, YB rotates B to þx̂. B then precesses in the
x̂ 2 ŷ plane, about −ẑ. Owing to the spin–spin coupling, B precesses
slightly slower (faster) if A ¼ 0 (A ¼ 1). After t seconds, B reaches
þŷ (−ŷ) in the rotating frame. XB then rotates B to þẑ (−ẑ), that is, to
0 or 1, where the final state of B depends on the input A. The precise
quantum description is easily obtained by multiplying out the

unitary rotation matrices. Finally, f4 is implemented as Y B 2 t 2
Ȳ BX̄B 2 ȲAX̄AY A, which is similar to f3 but leaves B inverted.
E3. The inverse of (E1) is done by applying the radiofrequency
pulses ȲAYB to take both spins back to 6ẑ. Spin A, which was j0〉 at
the input, is thus transformed into j0〉 or j1〉 for constant or balanced
functions respectively.
E4. The result is read out by applying a read-out pulse XA to bring
spin A back into the x̂ 2 ŷ plane. The time varying voltage V(t)
induced by the precession of spin A about −B0 is recorded by a phase
sensitive pick-up coil. Inspection of the spectrum of V(t) after a
single experiment run and an appropriate read-out pulse, immedi-
ately reveals whether f(x) is constant or balanced (Fig. 2).

We also characterized the entire deviation density matrix
rK [ r 2 TrðrÞI=4 (Fig. 3) describing the final 2-qubit state. These
results unambiguously demonstrate the complete proper function-
ing of the quantum algorithm, and provide data for the error
analysis described below.

Quantum computation requires that a coherent superposition be
preserved for the duration of the computation. This requires a
highly isolated quantum system (small Ĥenv), and fortunately,
nuclear spins are naturally well isolated from their environment.
Phase randomization due to B0 inhomogeneities was minimized by
using about 30 electromagnetic coils to shim the static field to be
constant to about one part in 109 over the sample volume. The

Figure 2 Proton spectrum after completion of

the D-J algorithm and a single read-out pulse

XA, with an effectively pure initial state j00〉 and

with a thermal initial state (inset). The low(high)-

frequency lines correspond to the transitions

j00〉 ↔ j10〉 (j01〉 ↔ j11〉). The frequency is relative

to 499,755,169Hz, and the amplitude has arbitrary

units. The spectrum is the Fourier-transformed

time varying voltage V(t), induced in the pick up

coil by the precession of spin A about −B0, at

frequency qA, after the read-out pulse XA. V(t) is

given by VðtÞ < V0 Tr½e2 iĤ te2 iðp=2ÞÎx rð0Þeiðp=2ÞÎx eiĤ t 3

ð 2 ijxA 2 jyAÞÿ, where j x;yf g are Pauli matrices, and

r(0) is the density matrix of the state immediately

before the readout pulse. By this convention, a

spectral line for spin A is real and positive (nega-

tive) when spin A is j0〉 ðj1〉Þ right before the XA read-

out pulse. Experiments were performed at Stan-

ford University using an 11.7-Tesla Oxford Instru-

ments magnet and a VarianUNITY Inova

spectrometer with a triple-resonance probe. 13C-

labelled CHCl3 was obtained from Cambridge Iso-

tope Laboratories.

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

Experiment Theory

TheoryExperiment

f 3 f 4

f 1 f 2

Figure 3 Experimentally measured and theoretically expected deviation density

matrices after completion of the D-J algorithm. The diagonal elements represent

the normalized populations of the states j00〉, j01〉, j10〉 and j11〉 (from left to right).

The off-diagonal elements represent coherences between different states. The

magnitudes are shown with the sign of the real component; all imaginary

components were small. The deviation density matrix was obtained from the

integrals of the proton and carbon spectral lines, acquired for a series of 9

experiments with different read-out pulses for each spin (quantum state

tomography24). The observed experimental non-idealities can be quantified as

follows. In the experiments, the normalized pure-state population (ideally equal to

1), varied from 0.998 to 1.019. The other deviation density matrix elements (ideally

0), were smaller than 0.075 in magnitude. The relative error e on the experimental

pure-state output density matrix rexp, defined as e ¼ krexp 2 rtheoryk=krtheoryk, varied

between 8 and 12%.
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longitudinal and transverse relaxation time constants T1 and T2

were measured using standard inversion–recovery and Carr–Pur-
cell–Meiboom–Gill pulse sequences23, giving T1 < 19 and 25 s, and
T2 < 7 and 0.3 s, respectively, for proton and carbon; these were
much longer than required for our experiment, which finished in
about 7 ms.

The single most important source of errors in the experiments
was the radiofrequency field inhomogeneity and pulse-length
calibration imperfections. A direct measure of this inhomogeneity
is the ,200-ms time constant of the exponentially decaying envel-
ope observed from applying a single pulse as a function of pulse
length. Including the population permutation sequence, about 7
pulses are applied to each nucleus, with a cumulative duration of
,70–100 ms.

The second most important contribution to errors is the low
carbon signal-to-noise ratio, signal peak height/r.m.s. noise <35,
versus about 4,300 for proton. The carbon signal was much weaker
because the carbon gyromagnetic ratio is 4 times smaller, and the
carbon receiver coil is mounted more remotely from the sample.
Smaller contributions to errors came from incomplete relaxation
between subsequent experiments, carrier frequency offsets and
numerical errors in the data analysis.

For this small-scale quantum computer, imperfections were
dominated by technology, rather than by fundamental issues.
However, NMR quantum computers larger than about 10 qubits
will require creative new approaches, because the signal strength
decays exponentially with the number of qubits in the machine,
using current schemes24,25: for N spins, the signal from the initial
state 00…0 is proportional to n00…0 ~ NZ 2 N , where the single spin
partition function Z < 2 at high temperatures. Furthermore, coher-
ence times typically decrease for larger molecules, whereas the
average logic gate duration increases. Nevertheless, there is hope;
for example, because of the ensemble nature of the NMR approach,
the output result can be inferred as long as a distinguishable
majority of the molecules reach the correct final state. Creating an
effective pure state is thus not always necessary, as we have demon-
strated. Optical pumping and other cooling techniques can also be
used to prepolarize the sample to increase the output signal
amplitude, because Z < 1 at low temperatures. Quantum compu-
tation poses an interesting and relevant experimental challenge for
the future.
Note added in proof: During the course of this work, we became
aware of a closely related experiment by J. A. Jones and M. Mosca26.
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Spontaneous generation of complex order in apparently simple
systems is both arresting and potentially useful1–11. Here we
describe the appearance of complex, ordered structures induced
by the buckling of thin metal films owing to thermal contraction
of an underlying substrate. We deposit the films from the vapour
phase on a thermally expanded polymer (polydimethylsiloxane,
PDMS). Subsequent cooling of the polymer creates compressive
stress in the metal film that is relieved by buckling with a uniform
wavelength of 20–50 micrometres. The waves can be controlled
and orientated by relief structures in the surface of the polymer,
which can set up intricate, ordered patterns over large areas. We
can account qualitatively for the size and form of the patterned
features in terms of the non-uniform stresses developed in the
film near steps on the polymer substrate. This patterning process
may find applications in optical devices such as diffraction
gratings and optical sensors, and as the basis for methods of
strain analysis in materials.

Thin metal films—typically 50-nm-thick layers of gold with a
5-nm adhesion interlayer of titanium or chromium—were depos-
ited onto PDMS by electron beam evaporation (Fig. 1). The metal
source heats and expands the PDMS substrate before and during
deposition. We believe that local heating of the surface of the
PDMS also slightly modifies its mechanical properties; perhaps by
introducing new crosslinks12. After cooling to ambient tempera-
ture, the surface appeared frosted, because of light scattering from
a network of periodic surface waves (Fig. 2a)13. Similar waves were
found with a variety of metals, including nickel, aluminum,
titanium and chromium. The waves almost disappeared when
the sample was reheated to 110 8C, but reformed on cooling. They
also formed on PDMS externally heated to 300 8C during the
evaporation of metal. Conversely, when the PDMS was cooled to
0 8C during evaporation of metal, waves did not arise; this
observation verifies the central importance of the thermal excur-


