Realization of H.O.: Lumped Element Resonator

Realization of H.O.: Transmission Line Resonator

- · coplanar waveguide resonator
- close to resonance: equivalent to lumped element LC resonator

Realization of Transmission Line Resonator

coplanar waveguide:

cross-section of transm. line (TEM mode):

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich measuring the resonator:

photon lifetime (quality factor) controlled by coupling capacitors $C_{in/out}$

Resonator Quality Factor and Photon Lifetime

resonance frequency:

$$\nu_r = 6.04 \, \mathrm{GHz}$$

quality factor:

$$Q = \frac{\nu_r}{\delta \nu_r} \approx 10^4$$

photon decay rate:

$$\frac{\kappa}{2\pi} = \frac{\nu_r}{Q} \approx 0.8 \,\mathrm{MHz}$$

photon lifetime:

$$T_{\kappa} = 1/\kappa \approx 200 \, \mathrm{ns}$$

Controlling the Photon Life Time

Quality Factor Measurement

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

J. Appl. Phys. **104**, 113904 (2008)

Quantum Harmonic Oscillator at Finite Temperature

thermal occupation:

$$\langle n_{\mathrm{th}}
angle = rac{1}{\exp{(h
u/k_BT)} - 1}$$

low temperature required:

$$\hbar\omega\gg k_BT$$
 to GHz ~ 500 mK 20 mK $\langle n_{
m th}
angle \sim 10^{-11}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

How to Prove that a Harmonic Oscillator is Quantum?

_

- resonance frequency
- average charge (momentum)
- average flux (position)

all averaged quantities are identical for a purely harmonic oscillator in the classical or quantum regime

solution:

• make oscillator non-linear in a controllable way

Constructing Non-Linear Quantum Electronic Circuits

ETH

Eidgenössische Technische Hochschule Zürich Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004)
Swiss Federal Institute of Technology Zurich

Linear vs. Nonlinear Superconducting Oscillators

LC resonator

Josephson junction resonator

Josephson junction = nonlinear inductor

anharmonicity \rightarrow effective two-level system

A Low-Loss Nonlinear Element

a (superconducting) Josephson junction

- superconductors: Nb, Al
- tunnel barrier: AlO_x

M. Tinkham, Introduction to Superconductivity (Krieger, Malabar, 1985).

Josephson Tunnel Junction

the only non-linear LC resonator with no dissipation (BCS, $k_B T \ll \Delta$)

tunnel junction parameters:

• critical current I₀

junction capacitance C_J

high internal resistance R_J

 $= I_0 \sin \delta$ Josephson relations:

$$V = \phi_0 \frac{\partial \delta}{\partial t}$$

flux quantum:

phase difference:

The Josephson junction as a non-linear inductor

Josephson effect: dc-Josephson equation

$$\frac{\partial I}{\partial t} = I_{c} \cos \delta \frac{\partial \delta}{\partial t}$$

$$V = \frac{\phi_0}{2\pi} \frac{2\delta}{\delta t} = \frac{\phi_0}{277c} \frac{1}{\cos \frac{\pi}{35}} = V$$

Josephson inductance

LJ =
$$\frac{\phi_0}{2\pi I_c}$$
 $\frac{L_J}{\cos S}$

specific Josephson Inductance

nonlinearity

A typical characteristic Josephson inductance for a tunnel junction with $I_c = 100 \text{ nA is } L_{10} \sim 3 \text{ nH}.$

review: M. H. Devoret et al.,

Quantum tunneling in condensed media, North-Holland, (1992)

How to Make Use of the Josephson Junction in Qubits?

How is the control circuit important?

Controlling Coupling to the E.M. Environment

coupling to environment (bias wires):

decoherence from energy relaxation (spontaneous emission)

decoupling using non-resonant impedance transformers:

using resonant impedance transformers

control spontaneous emission by circuit design

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The Current Biased Phase Qubit...

... supplementary information on a different type of superconducting qubit.

Current Biased Phase Qubit

The bias current I distributes into a Josephson current through an ideal Josephson junction with critical current I_c , through a resistor R and into a displacement current over the capacitor C.

Kírchhoff's law:

$$I_{b} = I_{s} + I_{R} + I_{C}$$

$$= I_{c} \sin \delta + \frac{V}{R} + C \mathring{V}$$

Ic=Qc=CV IR=V/R Is=IcsinS

use Josephson equations:

W.C. Stewart, Appl. Phys. Lett. **2**, 277, (1968) D.E. McCumber, J. Appl. Phys. **39**, 3 113 (1968)

looks like equation of motion for a particle with mass ${f m}$ and coordinate ${f \delta}$ in an external

potentíal u:

partícle mass:

external potentíal:

Phase particle in a potential well

$$U(\delta) = \frac{I_{c}\phi_{0}}{2\pi} \left(-\frac{I_{6}}{I_{c}}\delta - \cos\delta\right)$$

cosine potential for $l_b = o$:

 $G_{3} = \frac{1}{2\pi}$

'tílted washboard' potentíal for $I_b \neq 0$:

potential barrier:

oscillation frequency:

$$\omega_o = \omega_\rho (1 - \xi^2)^{1/4} = \sqrt{\frac{\mu(\xi_0)}{m}}$$

with: $V = I_b/I_c$; $W_p = \sqrt{\frac{2\pi I_c}{\phi_{o}C}}$

Current-voltage characterístics

typical I-V curve of underdamped Josephson junctions:

Thermal Activation and Quantum Tunneling:

thermal activation rate:

 $\int_{\text{th}} = a_t \frac{\omega_o}{2\pi} \exp\left(-\frac{u_o}{k_{RL}}\right)$ damping dependent prefactor

quantum tunneling rate:

$$\prod_{qu} = a_q \frac{\omega_o}{2\pi} \exp\left(-\frac{36}{5} \frac{\mu_o}{4\omega_o}\right)$$

calculated using WKB method (exercise)

bías current dependence wolk); Uo(K)

energy level quantization:

neglecting non-linearity

Quantum Mechanics of a Macroscopic Variable: The Phase Difference of a Josephson Junction JOHN CLARKE, ANDREW N. CLELAND, MICHEL H. DEVORET, DANIEL ESTEVE, and JOHN M. MARTINIS Science 26 February 1988 239: 992-997 [DOI: 10.1126/science.239.4843.992] (in Articles) Abstract » References » PDF »

Macroscopic quantum effects in the current-biased Josephson junction M. H. Devoret, D. Esteve, C. Urbina, J. Martinis, A. Cleland, J. Clarke in Quantum tunneling in condensed media, North-Holland (1992)

Early Results (1980's)

search for macroscopic quantum effects in superconducting circuits

theoretical predictions:

- tunneling √
- energy level quantization √
- coherence

A.J. Leggett *et al.*, Prog. Theor. Phys. Suppl. **69**, 80 (1980), Phys. Scr. **T102**, 69 (2002).

short coherence times due to strong coupling to em environment

experimental verification:

current biased JJ = phase qubit

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich J. Clarke, J. Martinis, M. Devoret et al., Science 239, 992 (1988).

The Current Biased Phase Qubit

operating a current biased Josephson junction as a superconducting qubit:

initialization:

wait for $|1\rangle$ to decay to $|0\rangle$, e.g. by spontaneous emission at rate γ_{10}

Read-Out Ideas

measuring the state of a current biased phase qubit

tunneling:

- prepare state 1> (pump)
- wait $(\Gamma_{\scriptscriptstyle 1} \sim 10^3 \, \Gamma_{\scriptscriptstyle 0})$
- detect voltage
- |1> = voltage, |o> = no voltage

pump and probe pulses:

- prepare state 1> (pump)
- dríve ω_{21} transition (probe)
- observe tunneling out of |2>

típping pulse:

- prepare state 1>
- apply current pulse to suppress uo
- observe tunneling out of 1>

ETH

Eidgenössische Technische Hochschule Züric Swiss Federal Institute of Technology Zurich

The Cooper Pair Box a charge qubit.