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Generic Quantum Information Processor
The challenge:

2-qubit gates:
controlled interactionsqubits: controlled interactionsq

two-level systems

single-bit gates readout

• Quantum information processing requires excellent qubits, gates, ...
• Conflicting requirements: good isolation from environment while 

maintaining good addressability
M. Nielsen and I. Chuang, 

Quantum Computation and Quantum Information (Cambridge, 2000)

maintaining good addressability



The DiVincenzo Criteria

for Implementing a Quantum Computer in the standard (circuit approach) to quantum 
information processing (QIP):

#1. A scalable physical system with well-characterized qubits.
#2. The ability to initialize the state of the qubits.
#3. Long (relative) decoherence times, much longer than the gate-operation time.
#4. A universal set of quantum gates.
#5 A qubit-specific measurement capability#5. A qubit-specific measurement capability.

plus two criteria requiring the possibility to transmit information:

#6. The ability to interconvert stationary and mobile (or flying) qubits.
#7. The ability to faithfully transmit flying qubits between specified locations.

Topics

• realization of superconducting quantum electronic circuits
• harmonic oscillators (photons)
• non-harmonic oscillators (qubits)

• controlled qubit/photon interactions• controlled qubit/photon interactions
• cavity quantum electrodynamics with circuits

• qubit read-out
• single qubit control
• decoherence

t bit i t ti• two-qubit interactions
• generation of entanglement
• realization of quantum algorithmsq g



Conventional Electronic Circuits
first transistor at Bell Labs (1947)basic circuit elements:

basis of modern 
information and 

i t l d l ( 6)

communication 
technology

intel dual core processor (2006)

properties :properties :
• classical physics
• no quantum mechanics

2.000.000.000 transistors
smallest feature size 65 nm

• no superposition principle
• no quantization of fields

smallest feature size 65 nm
clock speed ~ 2 GHz
power consumption 10 W

Classical and Quantum Electronic Circuit Elements

basic circuit elements: charge on a capacitor:

current or magnetic flux in an inductor:

quantum superposition states:

• charge q

fl• flux 



Constructing Linear Quantum Electronic Circuits

basic circuit elements: harmonic LC oscillator: energy:
electronic

photonphoton

Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004)

Superconducting Harmonic Oscillator

a simple electronic circuit:

• typical inductor: L = 1 nH

• a wire in vacuum has inductance ~ 1 nH/mm

• typical capacitor: C = 1 pFLC
• a capacitor with plate size 10 m x 10 m and 

dielectric AlOx ( = 10) of thickness 10 nm has 
a capacitance C ~ 1 pF

LC

p p

• resonance frequency 



:

parallel LC oscillator circuit: voltage across the oscillator:parallel LC oscillator circuit: voltage across the oscillator:

total energy (Hamiltonian):

with the charge  stored  on the capacitor
fl d i h i da flux  stored in the inductor

properties of Hamiltonian written in variables and

and are canonical variablesand are canonical variables

see e.g.: Goldstein, Classical Mechanics, Chapter 8, Hamilton Equations of Motion



Raising and lowering operators:

i f d 

number operator

in terms of Q and 

with Zc being the characteristic impedance of the oscillator

charge Q and flux  operators can be expressed in terms of raising and lowering 
operators:

Exercise: Making use of the commutation relations for the charge and flux operators, 
show that the harmonic oscillator Hamiltonian in terms of the raising and lowering f g g
operators is identical to the one in terms of charge and flux operators.

How to Operate Circuits Quantum Mechanically?

recipe:

• avoid dissipation

• work at low temperatures

• isolate quantum circuit from environment

Review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004)



Internal and External Dissipation in an LC Oscillator

internal losses:
conductor, dielectric

external losses:
radiation, couplingp g

total losses

impedancep

quality factor

excited state decay rate

problem 2: internal and external dissipation

Why Superconductors?
Cooper pairs:

bound electron pairs

Bosons (S=0, L=0)

normal metal How to make qubit?superconductor 1

2 chunks of superconductors

2
• single non-degenerate macroscopic ground state
• elimination of low-energy excitations

macroscopic wave function

Superconducting materials (for electronics):

• Niobium (Nb): 2/h = 725 GHz, Tc = 9.2 K Cooper pair density ni
and global phase 

• Aluminum (Al): 2/h = 100 GHz, Tc = 1.2 K
and global phase i

phase quantization:  = n 2 
flux quantization:  = n 0




