ION TRAPS – STATE OF THE ART QUANTUM GATES

Silvio Marx & Tristan Petit

ION TRAPS – STATE OF THE ART QUANTUM GATES

- I. Fault-tolerant computing & the Mølmer-Sørensen gate with ion traps
- II. Quantum Toffoli gate

I. FAULT-TOLERANT COMPUTING & THE MØLMER-SØRENSEN GATE

Towards fault-tolerant quantum computing with ion traps,

J.Benhelm et.al, Nature 2008, doi:10.1038/nphys961

- Motivation
 - Ion traps are a promising candidate for universal quantum computation
 - Fault tolerant computing only if the errors are small
 - High fidelity single & multi qubit gates are needed
 - Single qubit gates have low error rates
 - Multi qubit gates are more difficult to perform
 - Error range $\sim 10^{-2}$ 10^{-4}
 - Recently shown: 2 qubit entangling gate with high fidelity "Mølmer-Sørensen gate"

Ion Traps I - Silvio Marx & Tristan Peti

Mølmer-Sørensen Gate

• Properties of the gate

- Scalable multi qubit entangling gate
- Performs collective "spin" flips

• Experimental setup

- Paul trap w/ two ⁴⁰Ca⁺ ions
- Bichromatic laser field

 $ω_{+/-} = ω_0 +/- \delta, \delta > υ$ υ the phonon frequency

$M \not \! \text{Olmer-Sorensen Gate}$

• Paul trap at the University of Innsbruck

• Procedure

- Doppler cooling & optical pumping with a laser for initialization to the ground state |SS>
- Applying the bichromatic laser field (gate)
- Readout with the CCD camera

• Energy scheme for the ⁴⁰Ca⁺ ions

• Gate mechanism

- $\omega_{+/-} = \omega_0 + / \delta$, $\delta > v$, ω_0 : single ion excitation frequency
- Gate operation: interference of 4 2-photon-processes

• Final measurements

- Black: probability p_2 of finding 2 ions in state |S>
- **Red**: probability p₁ of finding 1 ion in state |S>
- Blue: probability p₀ of finding 0 ions in state |S>

- Max. entanglement for $\tau=m^*\tau_{gate, m=1,3,...}$
- "Spin" flip for m=2,4,...

• Test the fidality of the gate after multiple operations

• Gate imperfections as function of pulse length

- Blue: state populations of p₀+p₂
- Red: resulting Bell state fidelity
- Black: magnitude of coherence of the system

• Conclusions

- High Bell state fidelity of F=99,3(1)% achieved
- Infidelity is less than 10⁻² threshold
- Further advances needed
- Good candidate for multi qubit entangling gates with single laser interaction for more than 2 qubits

• References

- <u>Towards fault-tolerant quantum computing with ion</u> <u>traps,</u> J.Benhelm et.al, Nature 2008, doi:10.1038/nphys961
- <u>Entangled states of trapped atomic ions, R. Blatt &</u> <u>D. Wineland, Nature 2008, doi:10.1038/nature07125</u>
- <u>Deterministic entanglement of ions in thermal states</u> <u>of motion, G.Kirchmair et. al., arXiv:0810.0670v1</u>
- <u>Scalable Entanglement of Trapped Ions</u>, C. Monroe et. al., http://www.boulder.nist.gov/timefreq/general/pdf/139 7.pdf
- <u>Optimierung verschränkender Quantengatter für</u> <u>Experimente mit Ionenfallen</u>, Volckmar Nebendahl, Diplomarbeit 2008, Universität Hamburg

II. TOFFOLI GATE

Realization of the quantum Toffoli gate with trapped ions, Monz, T; Kim, K; Haensel, W; et al. (not yet published)

PLAN

- 1. What is a Toffoli gate ?
- 2. Why use a single gate ?
- 3. General Principle
- 4. Results
- 5. Conclusion

- 1. What is a Toffoli gate ?
- Performs a NOT operation on a target qubit depending on the state of two control qubits

• Application in quantum error correction

2. Why use a single gate ?

• Could be done with concatenated two-qubit gates

• Advantages of a single gate:

- Simplify complex quantum operations
- Higher fidelity
- Faster

3. GENERAL PRINCIPLE

• System = string of ⁴⁰Ca⁺ ions confined in a linear Paul trap

• Ground state:
$$S_{1/2}(m=-1/2) = |S\rangle \equiv |1\rangle$$

• Excited state: $D_{5/2}(m=-1/2) = |D\rangle \equiv |0\rangle$

• Use of the centre-of-mass (COM) vibrational mode of the ion string as intermediate

- 3. GENERAL PRINCIPLE (II)
- 3 major steps:
- 1. Encoding of the joint quantum information of the control qubits $|c_1\rangle$ and $|c_2\rangle$ in the vibrational COM mode
- 2. NOT operation on the target qubit controlled by the vibrational mode
- 3. Decoding of the qubits (reversal of the encoding step)

3. GENERAL PRINCIPLE (III)

• Ideal unitary map implemented:

$$u_{\rm T} = \exp(-i\pi \frac{1}{2\sqrt{2}}\sigma_{Z,t}) \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 & 0 & 0 & -i & 0 \end{pmatrix}$$
sis

In the basis

 $\{|c_1, c_2, t\rangle\} = \{|DDD\rangle, |DDS\rangle, |DSD\rangle, |DSS\rangle, |SDD\rangle, |SDS\rangle, |SSD\rangle, |SSS\rangle\}$

3. ENCODING SECTION

$$\begin{array}{c|c} |D,n\rangle & & \\ & & \\ & & \\ & & \\ |S,n\rangle & \\ \end{array} \end{array} \begin{array}{c} & & \\ &$$

• State of the quantum qubits at the end: $|SS,0\rangle \rightarrow |DD,2\rangle$ $|DS,0\rangle \rightarrow \sin\frac{\pi}{2\sqrt{2}}|DD,1\rangle + \cos\frac{\pi}{2\sqrt{2}}|DS,0\rangle$ $|SD,0\rangle \rightarrow \cos\frac{\pi}{2\sqrt{2}}|DD,1\rangle - \sin\frac{\pi}{2\sqrt{2}}|DS,0\rangle$ $|DD,0\rangle \rightarrow |DD,0\rangle$

3. INFORMATION IN THE COM MODE

• Initially it contains no phonons

 $|vib\rangle = |n = 0\rangle$

• Encoding \longrightarrow 2 phonons ($|c_1c_2\rangle = |SS\rangle$) or 1 phonon (other cases)

• Removal of one phonon

$$(c_1 \text{ AND } c_2) = 1 \Rightarrow |n = 1\rangle$$

 $(c_1 \text{ AND } c_2) = 0 \Rightarrow |n = 0\rangle$

 $\mathbf{23}$

4. Results

• Probabilities of 81 (± 5)% that the ion ends up in the correct output state.

Basis: $\sigma_{c1} \otimes \sigma_{c2} \otimes \sigma_t \in \{I \otimes I \otimes I, I \otimes I \otimes X, \dots, Z \otimes Z \otimes Z\}$ • Mean fidelity of approximately 71%

4. Sources of infidelity

• Mainly due to technical imperfections:

- Rabi frequency imprecisions (12%)
- Temperature changes and voltage fluctuations (7%)
- Initialization of the COM mode in the ground state (1%)
- Laser linewidth and magnetic field fluctuations (1%)
- Ion state initialization (0.5% per ion)
- Statistical uncertainties in the tomographic measurements
- Decoherence time of quantum information stored in the vibrational mode: 85ms

5. COMPARAISON WITH CNOT GATES BASED REALIZATION

• Need of 6 CNOT gates to make a Toffoli gate

• Fidelity: $F = (92.6\%)^6 \sim 63\%$

• Duration of the gate = 3 times longer than the 3qubits gate (1.5ms)

QUESTIONS ?

PULSE SEQUENCE

	Pulse	Comment	Logical part
1	$R_1^+(\pi, \frac{3\pi}{2})$	Encode first target qubit onto motion	Encoding
2	$R_2^+\left(\frac{\pi}{\sqrt{2}},\frac{3\pi}{2}\right)$	Encode second target qubit onto motion	
3	$R_1^+\left(\frac{\pi}{2\sqrt{2}}, \frac{\pi}{2}\right)$	Composite pulse to remove one phonon	
4	$R_{1}^{+}(\pi,0)$		
5	$R_1^+\left(\frac{\pi}{2\sqrt{2}}, \frac{\pi}{2}\right)$		
6	$R_3\left(\frac{\pi}{2},0\right)$	Prepare target qubit for motion controlled NOT	controlled NOT
7	$R_3^+(\frac{\pi}{2},1)$	Composite phase gate	
8	$R_3^+\left(\sqrt{2}\pi, \frac{\pi}{2}\right)$		
9	$R_{3}^{+}\left(\frac{\pi}{2},0\right)$		
10	$R_3\left(\tfrac{\pi}{2},(\tfrac{1}{\sqrt{2}}-1)\pi\right)$	Complete motion controlled NOT on target qubit	
11	$R_1^+\left(\frac{\pi}{2\sqrt{2}}, (-\frac{1}{2} + \frac{1}{\sqrt{2}})\pi\right)$	Undo encoding algorithm	Decoding
12	$R_{1}^{+}\left(\pi, (-1 + \frac{1}{\sqrt{2}})\pi\right)$		
13	$R_1^+\left(\frac{\pi}{2\sqrt{2}}, (-\frac{1}{2} + \frac{1}{\sqrt{2}})\pi\right)$		
14	$R_2^+\left(\frac{\pi}{\sqrt{2}}, (\frac{1}{2} + \frac{1}{\sqrt{2}})\pi\right)$	Decoding finished for second control qubit	
15	$R_1^+\left(\pi, (\frac{1}{2} + \frac{1}{\sqrt{2}})\pi\right)$	Decoding finished for first control qubit, Toffoli complete	