ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

M. Riebe, et al. Nature 2004

Outline

- 4°Ca⁺ Experimental Implementation
- Teleportation Algorithm
- Results, Accuracy
- Outlook, Quantum Magic?

Implementation

Linear Paul Trap (Nobel Prize 1989)

Trapped Ion: 4°Ca+

Implementation

Algorithm Overview

Bell-State Preparation

$$ig|\Psi^+ig>_{23}=rac{1}{\sqrt{2}}\left(ig|1\ 0ig>_{23}+ig|0\ 1ig>_{23}
ight)$$
 Triplet State

Bell-State Preparation

Table 1 Pulse sequence of the teleportation protocol. Action Comment Light at 397 nm Doppler preparation 2 Light at 729 nm Sideband cooling 3 Light at 397 nm Optical pumping Entangle Entangle ion 3 with motional qubit Entanglement, 4 $R_3^+(\pi/2, 3\pi/2)$ 5 $R_{2}^{C}(\pi, 3\pi/2)$ Prepare ion 2 for entanglement denoted by R⁺ 6 $R_{2}^{+}(\pi,\pi/2)$ Entangle ion 2 with ion 3 7 Wait for 1 µs - 10,000 µs Standby for teleportation 8 $R_{2}^{H}(\pi, 0)$ Hide target ion 9 $R_1^{C}(\vartheta_{\chi}, \varphi_{\chi})$ Prepare source ion 1 in state χ Rotate into Bell basis 10 $R_{2}^{+}(\pi, 3\pi/2)$ Get motional gubit from ion 2 11 $R_1^+(\pi/\sqrt{2},\pi/2)$ Composite pulse for phasegate 12 $R_{1}^{+}(\pi, 0)$ Composite pulse for phasegate 13 $R_1^+(\pi/\sqrt{2},\pi/2)$ Composite pulse for phasegate 14 $R_{1}^{+}(\pi, 0)$ Composite pulse for phasegate 15 $R_1^{\rm C}(\pi,\pi/2)$ Spin echo on ion 1 16 $R_2^{\mathsf{H}}(\pi,\pi)$ Unhide ion 3 for spin echo 17 $R_{3}^{C}(\pi,\pi/2)$ Spin echo on ion 3 18 $R_{2}^{H}(\pi, 0)$ Hide ion 3 again 19 $R_{2}^{+}(\pi, \pi/2)$ Write motional gubit back to ion 2 20 $R_1^{\rm C}(\pi/2, 3\pi/2)$ Part of rotation into Bell basis 21 $R_{2}^{C}(\pi/2,\pi/2)$ Finalize rotation into Bell basis Read out 22 $R_{2}^{H}(\pi, 0)$ Hide ion 2 23 PMDetection for 250 µs Read out of ion 1 with photomultiplier 24 $R_{1}^{H}(\pi, 0)$ Hide ion 1 25 $R_2^{\mathsf{H}}(\pi,\pi)$ Unhide ion 2 26 PMDetection for 250 µs Read out of ion 2 with photomultiplier 27 $R_{2}^{H}(\pi, 0)$ Hide ion 2 28 Wait 300 µs Let system rephase; part of spin echo 29 Unhide ion 3 $R_2^{\mathsf{H}}(\pi,\pi)$ 30 $R_{3}^{C}(\pi/2, 3\pi/2 + \phi)$ Change basis Reconstruction 31 $R_3^{\rm C}(\pi,\phi)$ iσ_z conditioned on PM detection 1 32 $R_{2}^{C}(\pi,\pi/2+\phi)$ 33 $R_2^C(\pi, \phi)$ ia, conditioned on PM detection 2 34 Inverse of preparation of χ with offset ϕ $R_3^{\rm C}(\vartheta_{\chi},\varphi_{\chi}+\pi+\phi)$

Read out of ion 3 with camera

35

Light at 397 nm

Teleportation Step

Encoding of input state

$$U_{\chi} = |\chi\rangle\langle 1| + |\chi^{-}\rangle\langle 0| \longrightarrow$$
$$\langle\chi|\chi^{-}\rangle = 0$$

$$egin{aligned} &|\chi^{(1)}
angle = |1
angle \ &|\chi^{(2)}
angle = |0
angle \ &|\chi^{(3)}
angle = rac{1}{\sqrt{2}}\left(|1
angle + |0
angle
ight) \ &|\chi^{(4)}
angle = rac{1}{\sqrt{2}}\left(|1
angle + i\left|0
ight
angle
ight) \end{aligned}$$

Bell-State Analyser

Controlled Z-Gate: 180 degree phase flip

$$egin{aligned} Z &= \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight) \ 0 &
ightarrow \left| 0
ightarrow \ 1
ightarrow e^{i\pi} |1
ightarrow = -|1 \end{aligned}$$

State Detection

Readout: Measure joint quantum state

Hide/Unhide: Preserve coherence of other qubits

Target Ion Reconstruction

Results from PMT measurement: $\{|00\rangle_{12}, |01\rangle_{12}, |10\rangle_{12}, |11\rangle_{12}\}$

Z, X: Reconstruct state in target ion 3: Apply unitary rotation

$$\xrightarrow{-i\sigma_y, -i\sigma_z, i\sigma_x, 1} \\ \xrightarrow{} \quad |\chi^{(\exp)}\rangle$$

Obtain fidelity

Read out teleportated state: resonance fluoresence CCD

Results

Results

Table 1 Pulse sequence of the teleportation protocol.

	Action	Comment
	Lisht at 007 and	Developmenter
2	Light at 720 pm	Sideband cooling
2	Light at 397 pm	Ontical pumping
Entand	ale	Optical pumping
4	$R_{2}^{+}(\pi/2, 3\pi/2)$	Entangle ion 3 with motional gubit
5	$R_{2}^{C}(\pi, 3\pi/2)$	Prepare ion 2 for entanglement
6	$B_{+}^{+}(\pi,\pi/2)$	Entangle ion 2 with ion 3
7	Wait for 1 µs - 10,000 µs	Standby for teleportation
8	$R_{3}^{H}(\pi, 0)$	Hide target ion
9	$R_1^{\mathbb{C}}(\vartheta_{\chi},\varphi_{\chi})$	Prepare source ion 1 in state χ
Rotate	into Bell basis	
10	$R_2^+(\pi, 3\pi/2)$	Get motional qubit from ion 2
11	$R_1^+(\pi/\sqrt{2},\pi/2)$	Composite pulse for phasegate
12	$R_1^+(\pi, 0)$	Composite pulse for phasegate
13	$R_1^+(\pi/\sqrt{2},\pi/2)$	Composite pulse for phasegate
14	$R_1^+(\pi, 0)$	Composite pulse for phasegate
15	$R_{1}^{C}(\pi,\pi/2)$	Spin echo on ion 1
16	$R_3^{H}(\pi,\pi)$	Unhide ion 3 for spin echo
17	$R_{3}^{C}(\pi,\pi/2)$	Spin echo on ion 3
18	$R_3^{H}(\pi,0)$	Hide ion 3 again
19	$R_{2}^{+}(\pi, \pi/2)$	Write motional qubit back to ion 2
20	$R_1^{\bar{C}}(\pi/2, 3\pi/2)$	Part of rotation into Bell basis
21	$R_{2}^{C}(\pi/2,\pi/2)$	Finalize rotation into Bell basis
Read of	out	
22	$R_2^{H}(\pi, 0)$	Hide ion 2
23	PMDetection for 250 µs	Read out of ion 1 with photomultiplier
24	$R_1^{\rm H}(\pi, 0)$	Hide ion 1
25	$B_2^{H}(\pi,\pi)$	Unhide ion 2
26	PMDetection for 250 µs	Read out of ion 2 with photomultiplier
27	$R_{2}^{H}(\pi, 0)$	Hide ion 2
28	Wait 300 µs	Let system rephase; part of spin echo
29	$R_3^{H}(\pi,\pi)$	Unhide ion 3
30	$R_3^{\rm C}(\pi/2, 3\pi/2 + \phi)$	Change basis
Recon	struction	
31	$R_{3}^{\cup}(\pi, \phi)$	$i\sigma_x$ } = $-i\sigma_z$ conditioned on PM detection 1
32	$R_3^{\cup}(\pi,\pi/2+\phi)$	$-i\sigma_y$)
33	$R_{3}^{C}(\pi,\phi)$	$i\sigma_x$ conditioned on PM detection 2
34	$R_3^{\cup}(\vartheta_{\chi},\varphi_{\chi}+\pi+\phi)$	Inverse of preparation of χ with offset ϕ
35	Light at 397 nm	Read out of ion 3 with camera

14

Conclusion

- Quantum teleportation seems to work in the lab
- No hidden variables (classical channel necessary)

Outlook

- Processing entangled states in quantum computation
- Distribution of quantum information between different nodes in network