
Sources of Decoherence

G. Ithier et al., Phys. Rev. B 72, 134519 (2005)
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Reduce Decoherence using Symmetries

J. Koch et al., Phys. Rev. A 76, 042319 (2007)

J. Schreier et al., Phys. Rev. B 77, 180502 (2008)

5 mm

a Cooper pair box with a small charging energy



The Transmon: A Charge Noise Insensitive Qubit

J. Koch et al., Phys. Rev. A 76, 042319 (2007)

Reduce Decoherence Dynamically: Spin Echo

L. Steffen et al. (2007)
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One-Qubit Tomography

Coupling Superconducting Qubits and
Generating Entanglement

using Sideband Transitions



Sideband Transitions in Circuit QED

‣ System in dispersive limit (~uncoupled)

‣ Weak dispersive coupling still allows joint excitations to be driven

‣ Use sidebands to generate entanglement between qubit and resonator

‣ Sideband transitions forbidden to first order: use two photon transition

Bell State Preparation
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π pulse qubit A

Entangle qubit B 
with cavity using 
blue sideband B



Bell State Preparation
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to convert to
Φ Bell state

Characterise the 
final state using
quantum state 

tomography with
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Sidebands with 2 qubits and 0,1 photons



Bell state preparation sequence
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π pulse
qubit A



Bell state preparation sequence
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Bell state preparation sequence

π pulse
qubit B

Transfer to
Φ Bell state

2-Qubit Circuit QED with Selective Control

Selective qubit excitation 
using locally capacitively 

coupled drive lines

Local magnetic 
fields created 
using small 
inductively 

coupled coils



2-Qubit Circuit QED Chip with Selective Control

~ 8 mm

• Two near identical 
superconducting 
qubits

• Local control of 
magnetic flux allows 
independent selection 
of qubit transition 
frequencies

• Local drive lines allow 
selective excitation of 
individual qubits

~
selective qubit drive line

Qubits
2-photon

blue sidebands

A AB B

Spectroscopy on selective drive lines

‣spectral lines observed halfway between qubits and resonator
=> 2-photon blue sidebands

6.45 GHz
Resonator



Blue Sideband Rabi Oscillations

‣ Quantum state characterised with its density operator

‣ Consider for example the Bell state

‣ Matrix is Hermitian, trace 1 => for 2 qubits, 15 independent parameters

‣ Full measurement of density matrix possible with repeated experiments 
and state tomography with 15 combinations of single qubit rotations

Full Two-Qubit Tomography



Joint Two-Qubit State Measurement

‣ =>                     terms are present in the measurement operator,
and two qubit correlations are intrinsically measurable

‣ Resonator Hamiltonian:

‣ Two-qubit state dependent resonator frequency shift:

‣ Measured quantities are non-linear in the frequency shift
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A phase gate with 4 pulses
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Population of |S,1> - |D,2> remains unaffected
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in the standard (circuit approach) to  (QIP)

#1. A scalable physical system with well-characterized qubits.

#2. The ability to initialize the state of the qubits to a simple fiducial state.

#3. Long (relative) decoherence times, much longer than the gate-operation time.

#4. A universal set of quantum gates.

#5. A qubit-specific measurement capability.

#6. The ability to interconvert stationary and mobile (or flying) qubits.

#7. The ability to faithfully transmit flying qubits between specified locations.


