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Controlled exchange interaction between pairs of
neutral atoms in an optical lattice
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Ultracold atoms trapped by light offer robust quantum coherence
and controllability, providing an attractive system for quantum
information processing and for the simulation of complex pro-
blems in condensed matter physics. Many quantum information
processing schemes require the manipulation and deterministic
entanglement of individual qubits; this would typically be
accomplished using controlled, state-dependent, coherent inter-
actions among qubits. Recent experiments have made progress
towards this goal by demonstrating entanglement among an
ensemble of atoms1 confined in an optical lattice. Until now, how-
ever, there has been no demonstration of a key operation: con-
trolled entanglement between atoms in isolated pairs. Here we use
an optical lattice of double-well potentials2,3 to isolate and mani-
pulate arrays of paired 87Rb atoms, inducing controlled entangling
interactions within each pair. Our experiment realizes proposals
to use controlled exchange coupling4 in a system of neutral atoms5.
Although 87Rb atoms have nearly state-independent interactions,
when we force two atoms into the same physical location, the
wavefunction exchange symmetry of these identical bosons
leads to state-dependent dynamics. We observe repeated inter-
change of spin between atoms occupying different vibrational
levels, with a coherence time of more than ten milliseconds.
This observation demonstrates the essential component of a neut-
ral atom quantum SWAP gate (which interchanges the state of two
qubits). Its ‘half-implementation’, the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

gate, is entangling,
and together with single-qubit rotations it forms a set of universal
gates for quantum computation4.

Particle exchange symmetry plays a crucial role in much of con-
densed matter physics, for example allowing spin-independent,
purely electrostatic interactions between electrons to give rise to
magnetism by correlating their spins. While such effects have been
extensively discussed in the context of fermions, similar exchange
effects also apply to bosons, such as 87Rb, except that here the particle
wavefunctions are symmetrized rather than anti-symmetrized.
Exchange interactions leading to SWAP operations (interchanging
the state of two qubits) have been proposed for entangling qubits in
condensed matter implementations of quantum computing4,6, and as
a mechanism for single-qubit control in coded qubit spaces7. More
recently, exchange-induced entanglement has been proposed for
ultracold neutral atoms5,8. Other schemes9–11 that do not involve
exchange have relied on mechanisms that directly depend on
the internal (qubit) state, requiring state-dependent motion,
interaction or excitation of the atoms. Exchange interactions have
the advantage that they require none of these. Ordinary state-
dependent mechanisms often suffer from decoherence because
of state-dependent coupling with the environment. Exchange
mechanisms can be relatively free of such decoherence. For
example, one could choose magnetic-field-insensitive states as the

qubit basis even if those states had no direct spin-dependent
interactions.

To illustrate the working scheme of the two-qubit
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

gate
with bosons, consider a pair of atoms, each occupying the single-
particle vibrational ground state of two adjacent potential wells, left
(L) and right (R), with spatial wavefunctions wL xð Þ and wR xð Þ (see
Fig. 1a). The full, single-atom wavefunction is qvj i~wv xð Þ qj i, where
each qubit (specified by its location v 5 {L, R}) can be encoded in two
internal spin states of an atom as qj i~a 0j izb 1j i, for amplitudes a
and b associated with the qubit states 0j i and 1j i. For our demonstra-
tion, 0j iand 1j i are Zeeman states of 87Rb atoms, which are in adja-
cent sites of a double-well potential2. Neutral atoms have short range
‘contact’ interactions, and in 87Rb are nearly spin-independent. To
initiate the interaction, we merge the L and R sites into a single site so
that the atoms’ spatial probability distributions overlap12. During
this merger, the trapping potential is carefully adjusted so that the
atoms in L and R are adiabatically transferred to the excited (e) and
ground (g) vibrational states of the single well3, respectively:
wL xð Þ?we xð Þ and wR xð Þ?wg xð Þ (see Fig. 1a). The two qubits are
encoded in identical bosons, so the full two-particle wavefunction
must be symmetric under particle exchange, for example,
qL,pRj i~wL x1ð ÞwR x2ð Þ qj i1 pj i2zwR x1ð ÞwL x2ð Þ pj i1 qj i2, where the

two atoms are labelled 1 and 2. (In the merged trap, the subscripts
L and R are replaced by e and g, respectively.) The symmetrized states
0L,0Rj i, 0L,1Rj i, 1L,0Rj i, 1L,1Rj i represent a convenient computa-

tional basis because the identification of the qubit is straightforward:
qj i is always associated with wL xð Þ (or we xð Þwhen merged), while pj i

is always associated with wR xð Þ (or wg xð Þ). When the atoms interact
in the merged trap, the symmetrized energy eigenstates are no longer
the computational basis. The eigenstates are separable into spin and
spatial components (S and T indicate singlet and triplet):

ySj i~wS x1,x2ð Þ Sj i~ 1e,0g

�� �
{ 0e,1g

�� �� �. ffiffiffi
2
p

y0
T

�� �
~wT x1,x2ð Þ T 0

�� �
~ 1e,0g

�� �
z 0e,1g

�� �� �. ffiffiffi
2
p

y{
T

�� �
~wT x1,x2ð Þ T{j i~ 0e,0g

�� �

yz
T

�� �
~wT x1,x2ð Þ Tzj i~ 1e,1g

�� �

where wS(x1,x2)~we(x1)wg(x2){wg(x1)we(x2) and wT(x1,x2)~

we(x1)wg(x2)zwg(x1)we(x2); Sj i~ 1j i1 0j i2{ 0j i1 1j i2
� �� ffiffiffi

2
p

, T 0j i~
1j i1 0j i2z 0j i1 1j i2
� �� ffiffiffi

2
p

, T{j i~ 0j i1 0j i2, and Tzj i~ 1j i1 1j i2. The
spatial component of the singlet state ySj i is antisymmetric
under exchange of particles; there is no density overlap between
the two particles, giving essentially zero interaction energy for
the short-range contact interactions between the atoms. On
the other hand, the triplet states have an interaction energy
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Ueg~ 8pB2as

�
m

� � Ð
we xð Þj j2 wg xð Þ

���
���

2

d3x, where as is the s-wave scat-

tering length and m is the mass of 87Rb13. This energy difference
between the ‘singlet’ and the ‘triplet’ states can be viewed as arising
from an effective magnetic interaction !sesg between atoms in the
ground and excited states, where sn is the Pauli spin operator acting
on the qubit basis, for the atom in the vibrational state v 5 {e, g}. This
interaction can give rise to a spin exchange oscillation between the
qubit states 0e,1g

�� �
and 1e,0g

�� �
. If atoms in any of the four states of the

computational basis are combined into a single site adiabatically with
respect to the lattice vibrational level spacing, but diabatically with
respect to Ueg (thus projecting onto the interacting eigenstates), they
evolve in time as shown in Table 1. At time TSWAP:pB=Ueg, the

internal states associated with we(x) and wg(x) are swapped. If
the interaction is stopped at TSWAP/2 (for example, by separating
the atoms into the L and R sites), then the result is an entanglingffiffiffiffiffiffiffiffiffiffiffiffiffi

SWAP
p

.
We realized this exchange-mediated SWAP operation using arrays

of pairs of 87Rb atoms in a three-dimensional optical lattice. The
lattice consists of a dynamically adjustable two-dimensional lattice
of double-wells in the horizontal plane2,3, and an independent one-
dimensional lattice along the vertical direction. By controlling the
laser polarization, the unit cell of the two-dimensional lattice can be
continuously changed between the single-well (l-lattice) or double-
well (the half-wavelength l/2-lattice) configurations (see Fig. 1a),
where l 5 816 nm. We start with a magnetically trapped Bose–
Einstein condensate of ,6.0 3 104 atoms of 87Rb in the 5S1=2

F~1,mF~{1j i magnetic state, and slowly (in 140 ms) turn on the
l/2-lattice and vertical lattice, reaching depths of 40 6 2 ER and
54 6 3 ER, respectively. (ER~B2k2

R=2m~3:45h kHz is the photon
recoil energy and kR~2p=l is the photon recoil momentum.)
Ideally, the ensemble crosses the Mott insulator transition14, creating
a central core of atoms with unit filling factor15 in the ground state
of the l/2-lattice. The magnetic confining fields are then turned
off, leaving a homogeneous field B0 < 4.85 mT, which defines the
quantization axis. It also provides a quadratic Zeeman shift large
enough that we can selectively radio-frequency couple only the
F~1, mF~{1j i and F~1, mF~0j i states12, designated as our

qubit states 1j i and 0j i, respectively. Following this loading proced-
ure, isolated pairs of qubits are in the state 1L,1Rj i inside separate unit
cells of the lattice (see Fig. 1a, step 1).

We can prepare every pair of atoms in any non-entangled two-
qubit state by selectively addressing the atoms in the L and R sites. We
exploit the spin-dependence of the potential, which can be manipu-
lated through the same polarization control used to adjust the lattice
topology2,12. We first induce a state-dependence in the optical poten-
tial that produces an effective magnetic field gradient between the
two adjacent sites of the double well. This introduces a differential
shiftDnRF in the spin-resonant frequencies between the two sites. The
L or R qubits are then selectively addressed by applying a radio-
frequency pulse resonant only with those qubits. In our experiment,
DnRF < 20 kHz and we can prepare the state 0L,1Rj iwith 95% fidelity.

To measure the qubit state after the double well is transformed into
a single well, we map the quasi-momentum of atoms occupying dif-
ferent vibrational bands of the optical potential onto real momenta
lying within different Brillouin zones16,17. This is achieved by switch-
ing off the l-lattice and the vertical lattice in 500ms; after a 13 ms
time-of-flight, atoms occupying different vibrational levels become
spatially separated and can be absorption imaged. Moreover, applying
a magnetic field gradient during time-of-flight separates atoms in
different spin states along another axis. The populations of atoms in
0j i, 1j i and we(x), wg(x) can thus be differentiated in a single image

(see Fig. 2). By measuring the population in the different Brillouin
zones resulting from the samples loaded either only in the left or only
in the right sites of the double wells, we found that more than 80% (or
85%) of the atoms starting in the L (or R) sites end in the first excited
(or ground) state of the single-well potential.

As a demonstration of an exchange-induced SWAP, we initially
prepare the atoms in the state 0L,1Rj i. We then merge each double
well into a single well, transferring the atoms from the L and R sites
into the first excited and ground states, respectively, of the single-well
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Figure 1 | Experimental sequence. a, Preparation and interaction of two
qubits. Step 1: the system is initialized as qubit state 1L,1Rj i. Step 2: the two
neighbouring atoms in a double well are prepared in the qubit state 0L,1Rj i
using site-selective radio-frequency addressing based on the spin-state
dependence of the potential (indicated by the differing blue and red
potentials). Step 3: the potential barrier between the two sites is then
lowered. Step 4: the two sites merge, allowing the atoms to interact. Careful
control of the potentials during this merger forces the atom in the left site
into the first excited state and the atom from the right site into the ground
state of the final single-well configuration. b, Plot of the interacting (solid
lines) and non-interacting (dashed lines) two-particle energies during the
gate sequence (steps 2 to 4 in a). For visual clarity the energies are relative to
the non-interacting 1L,1Rj i eigenenergy, and the 34 MHz Zeeman shifts are
not included. The grey arrows indicate the evolution of the state 0L,1Rj i from
step 2 to step 4. The colour transition from red ( 1L,0Rj i) and blue ( 0L,1Rj i) to
purple ( y0

T

�� �
and ySj i) indicates the mixing of the two logical qubit states.

The evolution from the initial state 0L,1Rj i is non-adiabatic with respect to
interactions, and the projection onto the final singlet/triplet eigenstates
results in spin exchange oscillations.

Table 1 | Truth table for SWAP and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

gates
Initial State after time t

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

t~pB=2Ueg~TSWAP=2 SWAP t~pB=Ueg:TSWAP

0e,0g

�� �
e{iUeg t=2B 0e,0g

�� �
e{ip=4 0e,0g

�� �
0e,0g

�� �
0e,1g

�� �
cos Uegt=2Bð Þ 0e,1g

�� �
{i sin Uegt=2Bð Þ 1e,0g

�� �
0e,1g

�� �
{i 1e,0g

�� �� �� ffiffiffi
2
p

1e,0g

�� �
1e,0g

�� �
{i sin Uegt=2Bð Þ 0e,1g

�� �
z cos Uegt=2Bð Þ 1e,0g

�� �
{i 0e,1g

�� �
z 1e,0g

�� �� �� ffiffiffi
2
p

0e,1g

�� �
1e,1g

�� �
e{iUeg t=2B 1e,1g

�� �
e{ip=4 1e,1g

�� �
1e,1g

�� �

The table ignores a global phase factor e{iUeg t=2B .
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potential. The lattice parameters are adjusted throughout the trans-
formation so that the vibrational frequencies along all three spatial
directions remain non-degenerate to avoid unwanted energy level
crossings; the lowest vibrational frequency is always along the dir-
ection of the double wells. This transformation takes 500 ms, a time-
scale chosen to be adiabatic with respect to vibration. The basis
change due to interactions occurs during a small fraction of the total
merge time (as indicated by the colour transition at ,0.45 ms in
Fig. 1b), so this transformation is nearly diabatic with respect to
interactions. This projects the atoms onto a superposition of the
two eigenstates ySj i and y0

T

�� �
(see Fig. 1b), which oscillates between

the states 0e,1g

�� �
and 1e,0g

�� �
. We calculate that, assuming vibrational

adiabaticity, the failure to be completely diabatic would result in
approximately 92% population oscillation. (We estimate that it
would take longer than 4 ms to be fully adiabatic with respect to
interactions.) The state evolves in this single-well configuration for
a hold time th before measurement. As shown in Fig. 3, the popu-
lation in each spin component oscillates between the ground and the
first excited states. Fitting an exponentially damped sinusoid to the
time-dependent populations in 0j i and 1j i in the excited state gives a
period 2TSWAP 5 285 6 1ms, an amplitude of 27 6 2%, and a 1/e
decay time longer than 10 ms.

The .10 ms decay of the swap oscillations in Fig. 3 is much longer
than the single-spin phase coherence time12 of ,150 ms. This long
decay time results from the Zeeman-degeneracy of the 0e,1g

�� �
and

1e,0g

�� �
states, because superpositions of these two-atom states are

insensitive to spatial and temporal magnetic field noise, and they
form a decoherence-free subspace18. This is similar to fermionic
double quantum dot systems19, but there the underlying noise arises
from the inherent fluctuating background of nuclear spins. In con-
trast, here the inhomogeneous broadening arises from technical
sources such as background magnetic field gradients and shot-to-
shot field fluctuations. One could choose to encode a single qubit in
this two-atom decoherence-free subspace, for which spin exchange
would act as a single qubit operation7. Here, however, we have suf-
ficient coherence and individual control of the two spins to use the
two qubits separately; in this case spin exchange acts to entangle the
two qubits.

To investigate spin coherence during the exchange interaction
within the full two-qubit Hilbert space, we place both qubits in a
superposition of 0j i and 1j i and allow them to evolve under exchange
(see Fig. 4a). Starting with atoms in 0e,1g

�� �
, we apply a radio-

frequency p/2 pulse to both qubits, producing a superposition of
all four two-qubit logical states. The atoms evolve for 165 ms, longer
than is required for a full swap, and a second p/2 pulse is applied to
read out the coherence. (A p-pulse inserted between the p/2 pulses
creates a spin echo to cancel the effects of the magnetic field inhomo-
geneity12.) The subsequent swap oscillations (Fig. 4c) have the
expected phase and 80 6 2% of the amplitude compared to the case
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Figure 2 | Qubit state analysis. Time-of-flight images mapping the atoms’
internal and vibrational states: the images were produced by preparing single
atoms in one of the two single-qubit basis states (internal spin states) in
either the L or R qubit and performing the full sequence (steps 2 to 4 in
Fig. 1a), followed by Brillouin zone mapping (see text) and time-of-flight
absorption imaging. Different vibrational states are thus mapped to different
momentum regions. In addition, a magnetic field gradient (diagonal in the
image plane) applied during time-of-flight spatially separates atoms in
different spin states, indicated by the white dashed-line boxes. Each of the
input states maps to a distinct region of the image, allowing us to measure
the populations in the spin state 0j i or 1j i separately for each qubit. All axes
are momentum in units of BkR=
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Figure 3 | Collisional swap dynamics. a, Concatenated slices of absorption
images as a function of hold time th in the single-well configuration (Fig. 1a,
step 4). For technical reasons, the hold time can be no less than 200ms.
Atoms in each vibrational level oscillate between spin states 0j i and 1j i.
b, Fraction of atom populations in the excited state for atoms in 0j i (red) and
1j i (blue). Each point is extracted from the data in a by fitting the time-of-

flight image slices and extracting the relative amount of population in each
Brillouin zone. The solid lines are sinusoidal fits to the data, with a common
period of 285 6 1 ms and a common amplitude of 0.27 6 0.02. The amplitude
of the oscillation is smaller than the initial excited 0j i (or ground 1j i)
fraction, which gives rise to the difference in the bottom two panels of a and
the offset of the 0j i and 1j i fractions in b. The phase of the oscillations is
affected by interaction during the merging and during the process of
switching off the lattice. After more than six full periods of oscillation,
corresponding to 24

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

cycles, the amplitude of the oscillations shows
negligible decay. If the qubits are prepared initially in 1e,1g

�� �
or 0e,0g

�� �
, we

observe no evolution of the spin populations.
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without the additional radio-frequency pulses (Fig. 4b), a degrada-
tion approximately consistent with the measured single-qubit deco-
herence. This shows that the coherence time of the system is longer
than the time needed for both a swap operation and single-qubit
operations using radio-frequency addressing, which together consti-
tute a set of universal quantum logic operations.

Although the exchange oscillations show almost no decay over
many cycles, the initial amplitude is only 27% of the ideal case.
Assuming, pessimistically, that the remaining 73% of the atoms do
not SWAP, and so project onto the target state after

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

with
50% probability, we find a minimum fidelity of 0.64. The true fidelity
is probably higher and can be improved: we believe the major reduc-
tion in oscillation amplitude is due to imperfect loading of the initial
l/2-lattice Mott insulator state. Previous experiments in this appar-
atus20 indicate that in the l/2-lattice there are relatively few doubly
occupied sites, but there may be a significant fraction of empty sites.
An empty site merged with an occupied site produces a site where no
SWAPping can occur, reducing the oscillation amplitude. From our
previous measurements, we estimate that approximately 50% of the
l-sites (33% of the atoms) are unpaired. However, this initialization
infidelity is distinct from gate fidelity and can be improved21.

Imperfection in vibrational adiabaticity of the transfer from L and
R to e and g results in unwanted excitations of atoms to other vibra-
tional states, which are visible in the Brillouin zone mapping of Fig. 2.
Such motional problems are likely to be among the limiting factors
for the fidelity and speed of any collision-based gate, and will be a
topic of future study. Possible improvements include using deeper
lattices and coherent control techniques22. Imperfections in the
radio-frequency spin-flip state preparation, the vibrational adiabati-
city of the transfer from L and R to e and g, and the diabaticity with
respect to interactions during the merge account for an amplitude
reduction to approximately 59%. Other effects, including the state-
dependence of the l-lattice and of the interaction energies are rela-
tively small. Finally, the coherence of the individual qubits can be
significantly improved by actively stabilizing the magnetic field and
improving its spatial homogeneity. With the freedom to choose the
qubit spin states, we can improve the coherence even further by
storing the qubit information in field-insensitive hyperfine ‘clock-
states’. In this configuration, site-selective addressing could still be

achieved using two-photon transitions23 through an intermediate
site-dependent Zeeman state.

This demonstration of a controlled two-atom exchange operation
is the first realization of the key component of an exchange gate in
neutral atoms. As with all ensemble qubit measurements1, we do not
directly show non-classical correlations, but our observed spin SWAP-
ping oscillations clearly indicate that during every SWAP cycle the
system undergoes the entangling/disentangling dynamics associated
with a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

operation. Our results show that the double-well
optical lattice can be used as a testbed for exploring the two-atom
dynamics that underlie some of the key challenges in neutral-atom-
based quantum computing. Scaling to a large number of individually
controlled qubits requires individual and pairwise addressing, which
could be accomplished with state-dependent focused laser beams24.
The direct observation of exchange interactions is also relevant for
proposals to engineer quantum spin systems8,25 in which tunnelling
and exchange give rise to an effective magnetic interaction between
ground vibrational state atoms on neighbouring sites i and i11, which
is !sisiz1. The direct on-site exchange interaction observed here,
!sesg, could be used to provide effective magnetic interactions
between atoms in different vibrational bands26,27, or to ‘stroboscopi-
cally’ generate magnetic interactions between nearest neighbours28,29.
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