Implementation of the Deutsch Josza Algorithm on an ion-trap chantum computer

. Gulde et A

Przemyslaw Kotara – HU Berlin (Ger) Tijl Schmelzer - U Ghent (Be)

• Theory:

- Problem/Motivation
- The algorithm
 - Quantum Circuit
 - Deutsch algorithm
 - Deutsch-Jozsa algorithm
- Experiment:
 - Experimental setup
 - Error sources
 - Results
- References

- Deutsch-Jozsa algorithm is a possibility for computing global properties of certain functions in exp. less time than any class. algorithm
- goal \rightarrow determine the global property if a function is constant or balanced
- conventional deterministic algorithm takes 2ⁿ⁻¹ + 1 evaluations of f in the worst case
- Deutsch-Jozsa quantum algorithm produces an answer that is always correct with just 1 evaluation off
- Implementation serves to demonstrate the potential of ion traps for quantum computing

- Upper qubit (upper line) gives information which side of the coin
- Lower qubit (lower line) is an auxiliary working qubit
- R are rotations which create the superposition's
- U_f is an unitary operation
- Measurement of $|<1|a>_{3}|^{2}$ yields information if f is balanced or constant

1) Input: $|a,w\rangle_0 = |01\rangle = |0\rangle|1\rangle$

2)
$$(H \otimes H)$$
: $|a, w\rangle_1 = \frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle)$
3) U_f : $|a, w\rangle_2 = \begin{cases} \pm \frac{1}{2} (|0\rangle + |1\rangle) (|0\rangle - |1\rangle) & for \quad f(0) = f(1) \\ \pm \frac{1}{2} (|0\rangle - |1\rangle) (|0\rangle - |1\rangle) & for \quad f(0) \neq f(1) \end{cases}$

4)
$$(H \otimes 1)$$
: $|a,w\rangle_{3} = \begin{cases} \pm \frac{1}{\sqrt{2}} |0\rangle (|0\rangle - |1\rangle) & for \quad f(0) = f(1) \\ \pm \frac{1}{\sqrt{2}} |1\rangle (|0\rangle - |1\rangle) & for \quad f(0) \neq f(1) \end{cases}$
5) $= \pm \frac{1}{\sqrt{2}} |f(0) \oplus f(1)\rangle (|0\rangle - |1\rangle)$

• The state of the first qubit shows if f is constant or balanced

• Explanation of step 3:

$$\begin{aligned} x \rangle (|0\rangle - |1\rangle) &= |x\rangle |0\rangle - |x\rangle |1\rangle \longrightarrow |x\rangle |0 \oplus f(x)\rangle - |x\rangle |1 \oplus f(x)\rangle \\ &= |x\rangle |f(x)\rangle - |x\rangle |\neg f(x)\rangle \\ &= \begin{cases} |x\rangle |0\rangle - |x\rangle |1\rangle & for \quad f(x) = 0\\ |x\rangle |1\rangle - |x\rangle |0\rangle & for \quad f(x) = 1\\ &= (-1)^{f(x)} |x\rangle (|0\rangle - |1\rangle) \end{aligned}$$

• If Ix> itselve is a superposition, we have:

$$(-1)^{f(x)} |x\rangle = (-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle = \begin{cases} f(0) = f(1): & \begin{cases} f(0) = 0: & +|0\rangle + |1\rangle \\ f(0) = 1: & -|0\rangle - |1\rangle \\ \end{cases} = \pm (|0\rangle + |1\rangle \\ f(0) = 0: & +|0\rangle - |1\rangle \\ f(0) = 1: & -|0\rangle + |1\rangle \end{cases} = \pm (|0\rangle - |1\rangle \\ \end{cases}$$

- It's easy to expand the algorithm to n qubit's:
- Initial state with n qubits is: $|a, w\rangle_0 = |\vec{0}, 1\rangle = |0\rangle_1 |0\rangle_2 ... |0\rangle_{n-1} |0\rangle_n |1\rangle_{n+1}$
- Algorithm is very similar to Deutsch Algorithm
- But applying the n-qubit Hadamard transformation to initial state:

$$H_{\vec{x}} = \prod_{i=1}^{n} H_i$$

• Final state of the n-qubit algorithm

$$\left|a,w\right\rangle_{3} = \frac{1}{2^{n}} \sum_{\vec{z}} \sum_{\vec{x}} \left(-1\right)^{\vec{x}\cdot\vec{z}+f(x)} \left|\vec{z}\right\rangle \left(\frac{\left|0\right\rangle-\left|1\right\rangle}{\sqrt{2}}\right)$$

• Decide if f constant or balanced \rightarrow measure population of ground state I0>

$$\frac{1}{2^n} \sum_{\vec{x}} (-1)^{f(\vec{x})} = \begin{cases} \pm 1 & \text{for } f & \text{const.} \\ 0 & \text{for } f & \text{blanced} \end{cases}$$

- Theory:
 - Problem/Motivation
 - The algorithms
 - Quantum Circuit
 - Deutsch algorithm
 - Deutsch-Jozsa algorithm
- Experiment:
 - Experimental setup
 - Error sources
 - Results
- References

- ⁴⁰Ca+ ion in Linear Pauli-trap
- Lasercooling
- Ti-Sa-Laser for qubit-manipulations
 - Wavelength 729nm (linewidth<100Hz)
 - Acousto-optical modulator for freq-change and phaseshift
- Electron Shelving for electronic state Detection
 - 99,9% fidelity
 - 3ms detection time

- Combination of static and alternating EM-fields \rightarrow confine ions in an effective potential
- Field of ion trap = quadropole → vanishes at center & increases in all directions→ any deviations results in a net restoring force

- Linear ion traps allows to assemble many ions in a linear chain, thus:
 - can be addressed by laser beams
 - equilibrium position is field free
- in contrast to classical non-linear Paul trap where trough coulomb repulsion ions are pushed away from field free point
 → micro motion

Experimental Setup Linear Pauli-trap

 ⁴⁰Ca+ ions in Linear Pauli-trap

•
$$\omega_z = 2\pi^* 1,7MHz$$

- Laser cooling relies on the transfer of momentum from photos \rightarrow arrangement so that that forces push atoms in direction of the laser beam
- Momentum transfered \leftrightarrow photo is absorbed
- Emission in contrast of the absorption process is not directed → average effect of all emmission processes vanishes

- One need high scattering rate because otherwise the change in velocity is too small
- Using lasers → scatter up to 10⁸ photons per second →atom can be stopped over short distance

- Doppler cooling yield average vibrational quantum numbers $n_z \approx 20$
 - \rightarrow further cooling is achieved by sideband cooling
- Efficient laser cooling occurs when the frequency of the laser beam is tuned to the red sideband

٠

In this case the atom undergoes the transition:

 $lg,n > \rightarrow le,n-1 >$

- spontaneous emission occurs predominantly at the carrier frequency:
- le,n-1> \rightarrow lg,n-1>

- a. 1st Qubit a (Optical energylevels S¹/₂, D5/2)
- b. 2^{nd} Qubit W (Vibrational energylevels in ion trap 0_z , 1_z)
- c. Combination law>

- Single-Qubit rotations R:
 - Carrier rotation
 - − IS $n_z > \rightarrow$ ID $n_z >$
 - (729nm) Laser puls
- Double-Qubit rotations R+:
 - Transitions on the blue sideband
 - − IS $n_z > \rightarrow$ ID $n_z + 1 >$
 - (729nm + ω_z) Laser puls

$$Experimental Setup
Cubit encoding
$$R(\theta, \phi) = \exp\left[i\frac{\theta}{2}(e^{i\phi}\sigma^{+} + e^{-i\phi}\sigma^{-})\right]$$

$$R^{+}(\theta, \phi) = \exp\left[i\frac{\theta}{2}(e^{i\phi}\sigma^{+}b^{\dagger} + e^{-i\phi}\sigma^{-}b)\right]$$$$

01>

- σ transitions between IS> and ID>
- *b* transitions between 10_z > and 11_z >
- θ ~ pulse duration
- $\boldsymbol{\phi}$ phase between pulse and atomic polarization
- 2 important Rotations

$$-R_{y} = R(\pi/2, 0)$$

 $-R_{\bar{y}}^{-}=R(\pi/2,\pi)$

Experimental Setup Algorithm implementation

T

Table 1 Truth	Table 1 Truth table for the four possible functions						
	Constant functions		Balanced	Balanced functions			
	Case 1	Case 2	Case 3	Case 4			
f(0) f(1) w⊕f(a)	0 0 ID	1 1 NOT	0 1 CNOT	1 0 Z-CNOT			

Table 3 Implementations of R _{yw} U _f Ryw						
	Logic	Laser pulses				
f ₁	$R_{\tilde{y}_w}R_{y_w}$	No pulses				
f_2	Ryw SWAP-1 NOTa SWAP Ryw	$\operatorname{VAP} R_{y_{w}} = R^{+} \left(\frac{\mathbf{x}}{\sqrt{2}}, 0 \right) R^{+} \left(\frac{2\mathbf{x}}{\sqrt{2}}, \varphi_{\mathrm{SWAP}} \right) R^{+} \left(\frac{\mathbf{x}}{\sqrt{2}}, 0 \right)$				
		$R(\frac{\pi}{2},0)R(\pi,\frac{\pi}{2})R(\frac{\pi}{2},\pi)$				
		$R^{+}\left(\frac{\pi}{\sqrt{2}},\pi\right)R^{+}\left(\frac{2\pi}{\sqrt{2}},\pi+\varphi_{\text{SWAP}}\right)R^{+}\left(\frac{\pi}{\sqrt{2}},\pi\right)$				
f ₃	R _ý CNOT R _y	$R^{+}\left(\frac{\pi}{\sqrt{2}},0\right)R^{+}\left(\pi,\frac{\pi}{2}\right)R^{+}\left(\frac{\pi}{\sqrt{2}},0\right)R^{+}\left(\pi,\frac{\pi}{2}\right)$				
f ₄	R _{Fw} Z-CNOT Ryw	$R(\pi,0)R^{+}\left(\frac{\pi}{\sqrt{2}},0\right)R^{+}\left(\pi,\frac{\pi}{2}\right)R^{+}\left(\frac{\pi}{\sqrt{2}},0\right)R^{+}\left(\pi,\frac{\pi}{2}\right)R(\pi,0)$				
The rotation angle for $R^+(\theta,\varphi)$ is given for the $ 10\rangle \rightarrow 01\rangle$ transition. θ and φ denote the pulse duration and phase, respectively. $\varphi_{SWAP} = \arccos(\cot^2(\pi/\sqrt{2}))$						

- Doppler lasercooling 2ms on S½ \rightarrow P½
 - Result Vibrational quantum number $n_z = 20$
- Sideband Cooling 12ms
 - Result Vibrational Groundstate 0_z 99%
- Initialization by optically pump ion to $S^{1/2}$
 - Result $101 > = 15\frac{1}{2}0_z > 100$

- 12 μ s to 22 μ s: R_{ya} carrier pulse
- 54 μs to 212 μs : $R_{\overline{y_w}} U_{f_n} R_{y_w}$ blue sideband pulse on law>

– The phase is switched at 87, 133 and 166 μs

• 240 to 250 μs : $R_{\overline{\nu}a}$ carrier pulse

- 1 algorithm = several/many pulses
- Control relative phases precisely
- Unwanted shift has to be compensated

- Subspace {IS 0_z >, ID 0_z >, IS 1_z >, ID 1_z >}
- Transitions on the blue sideband
 - IS n_z> \rightarrow ID n_z+1>
 - IS 1_z> \rightarrow ID 2_z> outside subspace
- Composite Pulses
 - Sequence of carrier and blue sideband pulses that constrain the system to the subspace

- Fidelity I<1Ia>I²
 - Case 1,3,4 >97%
 - Case 2 >90%
- Error sources
 - Decoherence laser-atom phase
 - Mostly caused by ambient magnetic field fluctuations
 - Case 2 most complex pulse sequence
 - Higher laser power to speed up algorithm
 - \rightarrow This reduces sensitivity to phase decoherence
 - \rightarrow This causes off-resonant carrier excitation that limits fidelity

	0450 1	0030 2	0030 0	0430 4
•••••				•••••
Expected (1 a) ²	0	0	1	1
Measured (1 a) ²	0.019(6)	0.087(6)	0.975(4)	0.975(2)
Expected $ \langle 1 w \rangle ^2$	1	1	1	1
Measured (1 w) ²	-	0.90(1)	0.931(9)	0.986(4)

Caso 1

Case 2

Casa 2

Caso 4

- Stop Pulse sequence anytime
- $I < 1Ia(t) > I^2 =$ Probability of finding ion in D_{5/2} state
- Very small deviation of normal calculated ideal values (solid lines)

- High degree control over all relevant experimental parameters over long pulsesequences
 - Laser freq. and intensity, optical phases, and trap frequency ω_z
- Good procedure for the future
 - More complex algorithms
 - Scaling to multiple qubits
- Light shift compensation important for scaling
 - Ion heavier → higher laser intensities for sideband transitions which increases light shifts
- All gate operations possible
- Possible ⁴³Ca+ instead of ⁴⁰Ca+ with potentially longer coherence time

- Quantum Computing: A Short Courses form Theory to Experiment, J.Stolze and D.Suter
- Verschränkte Systeme: Die Quantenphysik auf neuen Wegen, J. Andretsch
- Seminar Quanteninformationsverarbeitung Vortrag Nr.4 Quantengatter & Algorithmen WS 02/03, *S. Bauer, TU München*
- Quantum Computation and Quantum Information, *M. Nielsen and I. Chuang*
- QSIT Lectures
- www.wikipedia.com