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Problem/Motivation

• Deutsch-Jozsa algorithm is a possibility for computing global properties 
of certain functions in exp. less time than any class. algorithm

• goal → determine the global property if a function is constant or 
balanced

• conventional deterministic algorithm takes 2n-1 + 1 evaluations of f in the 
worst case

• Deutsch-Jozsa quantum algorithm produces an answer that is always 
correct with just 1 evaluation off

• Implementation serves to demonstrate the potential of ion traps for 
quantum computing



The Algorithm

• Upper qubit (upper line) gives information which side of the coin

• Lower qubit (lower line) is an auxiliary working qubit

• R are rotations which create the superposition’s

• Uf is an unitary operation

• Measurement of |<1|a>3|2 yields information if f is balanced or constant

Quantum Circuit
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• The state of the first qubit shows if f is constant or balanced

The Algorithm
Deutsch Algorithm
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• If lx>  itselve is a superpostiton, we have:
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• Explanation of step 3:

The Algorithm
Deutsch Algorithm



The Algorithm
Deutsch-Josza Algorithm

• Initial state with n qubits is:

• It‘s easy to expand the algorithm to n qubit‘s:
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• Algorithm is very similar to Deutsch Algorithm

• But applying the n-qubit Hadamard transformation to initial state:
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• Final state of the n-qubit algorithm
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• Decide if f constant or balanced → measure population of ground state l0>
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• 40Ca+ ion in Linear Pauli-trap 
• Lasercooling
• Ti-Sa-Laser for qubit-manipulations

– Wavelength 729nm (linewidth<100Hz)
– Acousto-optical modulator for freq-change and 

phaseshift
• Electron Shelving for electronic state Detection

– 99,9% fidelity 
– 3ms detection time

Experimental Setup
Overview



Experimental Setup
Linear Pauli-trap

• Combination of static and alternating EM-fields → confine ions in an 
effective potential

• Field of ion trap = quadropole → vanishes at center & increases in all 
directions→ any deviations results in a net restoring force

• Linear ion traps allows to assemble many 
ions in a linear chain, thus:

can be addressed by laser beams
equilibrium position is field free

• in contrast to classical non-linear Paul trap 
where trough coulomb repulsion ions are 
pushed away from field free point 
→ micro motion



• 40Ca+ ions in Linear 
Pauli-trap 

• ωz = 2π*1,7MHz

Experimental Setup
Linear Pauli-trap



• Laser cooling relies on the transfer of momentum from photos →
arrangement so that that forces push atoms in direction of the laser beam

• Momentum transfered ↔ photo is absorbed
• Emission in contrast of the absorption process is not directed → average 

effect of all emmission processes vanishes

• One need high scattering rate 
because otherwise the 
change in velocity is too small

• Using lasers → scatter up to 
108 photons per second 
→atom can be stopped over 
short distance

Experimental Setup
Doppler Laser Cooling



Experimental Setup
Sideband Laser Cooling

• Doppler cooling yield average vibrational quantum numbers nz≈ 20
→ further cooling is achieved by sideband cooling

• Efficient laser cooling occurs when the frequency of the laser beam is tuned 
to the red sideband 

• In this case the atom undergoes 
the transition:

lg,n> → le,n-1>

• spontaneous emission occurs 
predominantly at the carrier 
frequency:

• le,n-1> → lg,n-1>



a. 1st Qubit a (Optical energylevels S½, D5/2)

b. 2nd Qubit w (Vibrational energylevels in ion trap 0z, 1z)

c. Combination law>

Experimental Setup
QM energy levels



• Single-Qubit rotations R:
– Carrier rotation
– lS nz> lD nz>
– (729nm) Laser puls

• Double-Qubit rotations R+:
– Transitions on the blue sideband
– lS nz> lD nz+1>
– (729nm + ωz) Laser puls

Experimental Setup
Qubit encoding



• σ transitions between lS> and lD>
• b transitions between l0z> and l1z>
• θ ~ pulse duration
• φ phase between pulse and atomic polarization
• 2 important Rotations

– Ry = R(π/2, 0)
– Ry = R(π/2, π)

Experimental Setup
Qubit encoding



Experimental Setup
Algorithm implementation



– Doppler lasercooling 2ms on S½ P½
• Result Vibrational quantumnumber nz = 20

– Sideband Cooling 12ms
• Result Vibrational Groundstate 0z 99%

– Initialization by optically pump ion to S½
• Result l01> = lS½ 0z>

Experimental Setup
Startup



• 12 µs to 22 µs: Rya carrier pulse
• 54 µs to 212 µs: RywUfnRyw blue sideband 

pulse on law>
– The phase is switched at 87, 133 and 166 µs

• 240 to 250 µs: Rya carrier pulse

Experimental Setup
Case 3 as example



Error sources

• 1 algorithm = several/many pulses
• Control relative phases precisely
• Unwanted shift has to be compensated

Phaseshift compensation



Error sources

• Subspace {lS 0z>, lD 0z>, lS 1z>, lD 1z>}
• Transitions on the blue sideband

– lS nz> lD nz+1>
– lS 1z> lD 2z> outside subspace

• Composite Pulses
– Sequence of carrier and blue sideband pulses 

that constrain the system to the subspace

Computational subspace



Results

• Fidelity l<1la>l²
– Case 1,3,4 >97%
– Case 2 >90%

• Error sources
– Decoherence laser-atom phase

• Mostly caused by ambient magnetic field fluctuations

– Case 2 most complex pulse sequence
• Higher laser power to speed up algorithm

This reduces sensitivity to phase decoherence
This causes off-resonant carrier excitation that limits fidelity

Measurements: Outcome



Results
Measurements: Evolution

Follow evolution of l<1la>l²
• Stop Pulse sequence anytime
• l<1la(t)>l² = Probability of finding ion in D5/2 state
• Very small deviation of normal calculated ideal 

values (solid lines)



Results

• High degree control over all relevant experimental 
parameters over long pulsesequences
– Laser freq. and intensity, optical phases, and trap frequency ωz

• Good procedure for the future
– More complex algorithms
– Scaling to multiple qubits

• Light shift compensation important for scaling
– Ion heavier higher laser intensities for sideband transitions 

which increases light shifts
• All gate operations possible
• Possible 43Ca+ instead of 40Ca+ with potentially longer 

coherence time

Summary/Outlook
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