
scatter event rate which averages 820 ^ 8 counts per bin, the chance coincidence rate
which averages 374 ^ 6 counts per bin, and the background scatter event rate of 49 ^ 2
counts per bin. These rates were determined and confirmed using event rates before and
after the burst, combined with studies of the readout times of multiple detectors during
scattered events, and were verified independently using our Monte Carlo simulations.
Although the rotation will average out systematic variations in the scatter angle
distribution, we still have to correct for the complex time profile of the burst itself, which
will cause variations for an unpolarized source owing to the finite number of potential
scatter angles RHESSI can measure at any given instant. We modelled this effect by using
the 0.15–2.0 MeV total count rate in the RHESSI instrument (Fig. 1) as the time-
dependent flux template for a photon transport Monte Carlo simulation, and using the
time-averaged GRB photon spectrum as measured by RHESSI for our input spectrum.
This simulation used the detailed RHESSI mass model that has been developed under
CERN’s GEANT package, allowing us to model the instrument response to a GRB at the
IPN8 sky coordinates for each rotation angle and instantaneous flux, assuming an
unpolarized source. This distribution is also presented in the top panel of Fig. 2. We are
looking for a modulation signal relative to this variation induced by the GRB time profile.

In the bottom panel of Fig. 2 we show the residual of the measured distribution once we
have subtracted away the simulated response for an unpolarized GRB, showing our
absolute modulation signal. For an unpolarized source we would expect this distribution
to be flat, which we can rule out at an extremely high confidence level (x2 ¼ 83.5, 11
degrees of freedom, d.f.). When we fit this with a modulation curve, the fit improves
significantly (x2 ¼ 16.9, 9 d.f.), with an amplitude of 128 ^ 16 counts per bin.
Statistically, this is a reasonable fit to the data (the probability of x2 . 16.9 is 5%), but
could be improved with even more detailed Monte Carlo simulations including time-
dependent spectral variability. Using the count rates given above and the simulated
distribution for an unpolarized GRB, we performed further numerical simulations to
determine the probability that an unpolarized GRB could produce a modulation as large
as the one we measure due to random Poisson counting statistics. We found this
probability to be very low, ,1028, which translates to a confidence that we have measured
a polarization at a level .5.7j. Finally, we estimated the modulation factor to be
mm ¼ 0.19 ^ 0.04, using both a separate photon transport code which fully treats
polarization in scattering and uses a simplified mass model, as well as analytical estimates
based on the GEANT simulation with the full RHESSI mass model. Combining the
modulation amplitude, the total source scatter event rate, and the RHESSI modulation
factor, we derive a measured polarization Pm ¼ 80 ^ 20%.

A number of tests were performed to check that the measured modulation is real. First,
we verified that the simulated variation induced by the GRB light curve is accurate by
comparing it to an angular distribution of events that were chance coincidences in two
detectors. These interactions are nearly simultaneous, but separated by enough time to
distinguish them as chance coincidences, not real scattered photons. This distribution
should exhibit the same variations owing to the GRB light curve, but no polarization.
When we subtracted the simulated distribution from the chance-coincident distribution,
we found no evidence for a residual modulation. We have performed a number of
independent checks to make sure we do not see modulations from other sources as well.
We have verified that extended RHESSI background observations show no sign of
modulations. In addition, we have done a preliminary analysis of a strong solar g-ray flare
observed on 23 July 2002, where we see some evidence for a modulation, but
corresponding to a polarization ,10%. Therefore we feel confident that we have
characterized the systematic effects in RHESSI to below the 10% polarization level.
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Distribution of entangled states between distant locations is
essential for quantum communication1–3 over large distances.
But owing to unavoidable decoherence in the quantum com-
munication channel, the quality of entangled states generally
decreases exponentially with the channel length. Entanglement
purification4,5—a way to extract a subset of states of high
entanglement and high purity from a large set of less entangled
states—is thus needed to overcome decoherence. Besides its
important application in quantum communication, entangle-
ment purification also plays a crucial role in error correction for
quantum computation, because it can significantly increase the
quality of logic operations between different qubits6. Here we
demonstrate entanglement purification for general mixed states
of polarization-entangled photons using only linear optics7.
Typically, one photon pair of fidelity 92% could be obtained
from two pairs, each of fidelity 75%. In our experiments,
decoherence is overcome to the extent that the technique would
achieve tolerable error rates for quantum repeaters in long-
distance quantum communication8. Our results also imply that
the requirement of high-accuracy logic operations in fault-
tolerant quantum computation can be considerably relaxed6.

The resource of quantum entanglement has many important
applications in quantum information processing (QIP). In quantum
communication, the generation of entanglement between distant
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locations is essential for the long-distance realization of quantum
cryptography1, dense coding2 and quantum teleportation3. Mean-
while, quantum information protocols involving entanglement are a
very useful tool for fault-tolerant quantum computation9.

So far, significant experimental progress has been achieved in
small-scale realizations of quantum communication10–14 (up to a
few tens of kilometres) and quantum computation15 (up to a few
qubits). However, serious problems occur in bringing QIP to
technologically useful scales. One of the most important problems
is the unavoidable decoherence due to the coupling between the
quantum system and the environment. For instance, because of the
noise in the quantum communication channel, the quality of
entanglement between two particles is degraded more and more
the further they propagate. Yet, the implementation of any of the
above quantum communication schemes over large distances
requires that two distant parties share highly entangled pairs. It is
therefore necessary to overcome the unfavourable decoherence in
any realistic large-scale realization of QIP.

One of the main tools used to overcome decoherence in QIP is
entanglement purification4,5—a method by which one can extract a
smaller number of highly entangled pairs out of a large number of
less-entangled pairs using only local operations and classical com-
munication. Quantum repeaters8, based on both entanglement
purification4,5 and entanglement swapping16, can thus provide an
efficient solution to the problems of decoherence and photon loss in
long-distance quantum communication10. Moreover, a recent study
shows that entanglement purification is also important for fault-
tolerant quantum computation because it can be used to increase
the quality of logic operations between two qubits by several orders
of magnitude6.

Recently, experimental efforts17–19 have been made to overcome
some special decoherence processes using the ideas of local filtering

and entanglement concentration20. However, the implementation
of a general entanglement purification scheme4,5 that works for
arbitrary unknown decoherence processes remains an experimental
challenge. The main practical drawback of the original purification
scheme4,5 is that it requires the CNOT operation. However, there is
at present no implementation of CNOT gates between independent
qubits that could be used for purification in the context of long-
distance quantum communication. This is because the tolerable
error rates of the CNOT operation must not exceed a few per cent8,
which is far beyond what is experimentally possible at present.
Fortunately, it was shown recently that this problem can be over-
come by a general purification method that requires only linear
optical elements7.

We now briefly explain the linear optical purification scheme7

(shown in Fig. 1) by discussing a specific example. Suppose that two
distant parties, Alice and Bob, need to share photon pairs in the
polarization entangled state jFþlab for a certain quantum com-
munication task. We use the four usual Bell states:

jF^lab ¼
1ffiffiffi
2
p ðjHlajHlb ^ jVlajVlbÞ

jW^lab ¼
1ffiffiffi
2
p ðjHlajVlb ^ jVlajHlbÞ

ð1Þ

where H (or V) denotes horizontal (or vertical) linear polarization,
and subscripts a (or b) indicates the particle at Alice’s (or Bob’s)
locations. Suppose further that, owing to noise in the quantum
communication channel, the pairs they share before purification are
in the mixed state:

rab ¼ FjFþlabkFþjþ ð1 2 FÞjW2labkW2j ð2Þ

where jW2lab is an unwanted admixture. Without loss of generality,
we choose this specific form of r ab just for the convenience of
discussion. The entanglement fidelity with respect to jFþlab is then
given by F ¼ kFþjrabjF

þl:
Alice and Bob start by choosing two pairs from the ensemble r ab.

Each of them then superimposes their photons on a polarizing beam
splitter (PBS). The PBS with two input modes and two output
modes transmits horizontal and reflects vertical polarization. An
essential step in our purification scheme is to select those cases
where there is exactly one photon in each of the four spatial output
modes, which we refer to as ‘four-mode cases’.

From equation (2) it follows that the original state of the two
pairs can be seen as a probabilistic mixture of four cases: with a
probability of F2, pairs 1 and 2 are in the state jFþla1b1�jF

þla2b2;
with equal probabilities of F (1 2 F) in the states jW2la1b1�jF

þla2b2

and jFþla1b1�jW
2la2b2; and with a probability of (1 2 F)2 in

jW2la1b1�jW
2la2b2:

It is easy to see that the cross combinations jW2la1b1�jF
þla2b2

and jFþla1b1�jW
2la2b2 never lead to four-mode cases, because in

these two cases only three photons always have equal polarization.
Thus, by selecting only four-mode cases one can eliminate the cases
that have one single bit-flip error.

Consider now the other two combinations jFþla1b1�jF
þla2b2 and

jW2la1b1�jW
2la2b2: Let us first discuss the jFþla1b1�jF

þla2b2 case.
In Fig. 1 we show that following our protocol Alice and Bob will get
the state jFþla3b3 whenever there is exactly one photon in each
output mode, that is, with a probability of 50%. In the
jW2la1b1�jW

2la2b2 case, following the same procedure, Alice and
Bob will project the remaining two photons a3 and b3 into the state
jWþla3b3 with a probability of 50%.

Because the probabilities for jFþla1b1�jF
þla2b2 and

jW2la1b1�jW
2la2b2 are F 2 and (1 2 F)2 respectively, after perform-

ing the purification procedure Alice and Bob will obtain the state
jFþla3b3 with a probability of F2=2 and the state jWþla3b3 with a
probability of ð1 2 FÞ2=2: By applying our procedure, they can thus

Figure 1 Schematic drawing showing the principle of entanglement purification using

linear optics. We start with two less entangled pairs shared by Alice and Bob who

superpose their photons on a polarizing beam splitter (PBS). Alice and Bob keep only those

cases where there is exactly one photon in each output mode (‘four-mode cases’). They

perform a polarization measurement in the ^ basis in modes a4 and b4, where j þ l¼
ð1=

ffiffiffi
2
p
ÞðjH lþ jV lÞ and j2 l¼ ð1=

ffiffiffi
2
p
ÞðjH l 2 jV lÞ: Depending on the results, Alice

performs a specific operation on the photon in mode a3. After this procedure, the

remaining pair in modes a3 and b3 will have a higher degree of entanglement than the two

original pairs. To explain the protocol in detail, we consider the case where both pairs are

in the state jFþlab; which occurs with a probability of F 2 in our example. For the state

jFþla1b1�jF
þla2b2; considering only those cases for which one, and only one, photon is

finally found in modes a4 and b4 one obtains the state ð1=2ÞðjHla3jHla4jHlb3jHlb4þ

jV la3jV la4jV lb3jV lb4Þ: This shows that the probability for a four-mode case is 50%. Alice

and Bob can then generate maximal two-photon entanglement between the output modes

a3 and b3 out of the four-photon entanglement by performing polarization measurements

on each of the two photons at a4 and b4 in the ^ basis and comparing their results. If the

measurement results at a4 and b4 are the same—that is, j þ lj þ l or j2 lj2 l—then

the remaining two photons at a3 and b3 are left in the state jFþla3b3: If the results are

opposite, namely j þ lj2 l or j2 lj þ l; then the remaining two photons are left in the

state jF2la3b3: In the second case, Alice can simply apply a local phase-flip operation on

her remaining photon to convert the state jF2la3b3 back to jFþla3b3:
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create a new ensemble described by the density operator

r
0

ab ¼ F
0
jFþlabkFþjþ ð1 2 F

0
ÞjW2labkW2j ð3Þ

with a larger fraction of F
0
¼ F2=½F2þ ð1 2 FÞ2�. F (for F . 1/2)

of pairs in the desired state jFþlab than before the purification.
Until now, it seems that we have only discussed a rather special

example, that is, how to eliminate single bit-flip errors. However, it
has been shown4,7 that with twirling (that is, rotating bases between
individual purification steps or randomly choosing bases), the same
method would also apply to the general mixed states r ab, provided
that they contain a sufficiently large fraction F . 1=2 of photon
pairs in a maximally entangled state, jFþlab in our case. In short,
this can be understood as follows. Using our purification method,
one can first purify away single bit-flip errors. Phase errors can then
be transformed into bit-flip errors by a 458 polarization rotation and
treated in a subsequent purification step. Therefore, to demonstrate
the generality of our scheme, it is sufficient to verify the purification

effect for the mixed state described in equation (2).
To demonstrate the purification scheme experimentally using

only linear optical elements, we need to process two photon pairs
which are in the mixed state (2). A schematic drawing of our
experimental set-up is shown in Fig. 2. In our experiment, the
required photon pairs are produced by parametric down-conver-
sion from an ultraviolet pulsed laser in a beta barium borate (BBO)
crystal21. We then interfere the two photons at Alice’s (or Bob’s) side
in the pair a1–a2 (or b1–b2) at a PBS by making them indistin-
guishable. To achieve this indistinguishability, several methods have
been used to guarantee that the photons at the same PBS have a
perfect spatial and temporal overlap22 (see Fig. 3a and Methods
section). After the four photons’ passage through the two PBS, the

Figure 2 Experimental set-up for entanglement purification. A pulse of ultraviolet light

passes through a BBO crystal twice to produce two polarization-entangled photon pairs,

that is, pair 1 in a1–b1 and pair 2 in a2–b2. The ultraviolet laser with a central wavelength

of 394 nm has a pulse duration of 200 fs and a repetition rate of 76 MHz. Four

compensators (Comp.) are used to offset the birefringent effect caused by the BBO crystal

during parametric down-conversion. In the experiment, with an average pump power of

500 mW, we are able to observe about 1.7 £ 104 entangled pairs per second. The two

photon pairs are originally prepared in the state jFþlab; with a high signal-to-noise ratio

of 30:1 in the ^ basis. One member of each pair (the photons a1 and a2) is further sent

through a half-wave plate (l/2), whose angle is randomly set at either þd or 2d, to

prepare the mixed state (2). Here, in order for the two pairs a1–b1 and a2–b2 to have

roughly the same twofold coincidence, we have carefully chosen four detectors which

have almost-equal detection efficiency. This arrangement ensures that the difference in

twofold coincidence between pair a1–b1 and pair a2–b2 is less than 5% in all

measurements. These features allow us to perform a precise analysis on the accuracy of

our purification protocol. We then send the two pairs through the corresponding PBS to

perform entanglement purification. By adjusting the positions of the delay mirrors D1 and

D2, we can achieve simultaneous arrival of the photons at their respective PBS. Detecting

exactly one photon in each of the four outputs (a3, a4, b3 and b4) behind a 458 polarizer

(Pol.), one can verify the success of the purification scheme.

Figure 3 Experimental results showing the procedures to achieve perfect temporal

overlap and to adjust the phase f4 ¼ 0. a, After roughly achieving the temporal overlap of

modes b1 and b2, and of modes a1 and a2, we measure the twofold coincidence between

the output modes a4 and b4 behind 458 polarizers, by scanning the position of D1 with a

step size of 1 mm. The envelope of the observed twofold coincidence varies indicating the

visibility of the two-photon coherence. Outside the coherent region, jHla4jHlb4 and

jV la4jV lb4 are distinguishable, so no interference occurs. Inside the coherent region, the

best visibility is obtained at the position where perfect temporal overlap is achieved. We

perform fine adjustment of the position of D2 and repeat the scanning of D1 until the best

visibility is obtained. b, We use a piezo translation stage to move the mirror D1 to perform

a fine scan around the region of zero delay, that is, around the centre of the envelope. By

setting the piezo system to a position where we observe maximum twofold coincidence of

a4–b4, f2 thus equals 0 and so does f4. Note that in the experiment we also insert one

458 polarizer into each of the outputs a3 and b3 and measure their twofold coincidence.

Another sine curve is observed (not shown). Usually the twofold coincidences of a4–b4

and of a3–b3 do not vary synchronously as we move the piezo system. This is caused by

the birefringent effect, that is, the H and V polarizations of a photon accumulate a different

phase during its passage through the PBS. This ultimately implies that the jH ljHl and

jV ljV l components in a3–b3 acquire a relative phase f
0

2, which is different from f2.

Experimentally, we introduce an additional birefringent element to compensate for the

above effect. After this compensation, the two curves exhibit perfect synchronization, that

is, f2 ¼ f
0

2:
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two photons in the mode pair a3–b3 have a higher probability to be
in the desired state jFþlab if we detect one and only one photon
polarized along the ^ basis in each of the modes a4 and b4. Here we
note that, owing to the absence of single-photon detectors, it is for
the time being necessary also to detect the purified photons in a3
and b3 to ensure a fourfold event.

Thus far, we have considered only the ideal case, where there is
at most one pair of photons in each of the input modes a1–b1 and
a2–b2. However, with a probability of the same order of magnitude,
two photon pairs will be emitted into the same mode pair because
parametric down-conversion is a spontaneous process. This case
could also result in four-mode cases in the real experiment.
Specifically, if the two photon pairs are both in the mode pair
a1–b1, we will then sometimes obtain a four-mode contribution
that is in the state jVla3jHla4jVlb3jHlb4; and, if the two photon pairs
are both in a2–b2, we will sometimes obtain the four-mode
contribution jHla3jVla4jHlb3jVlb4:

As pointed out in ref. 7, if the position of the reflection mirror D1
is fixed and the amplitudes of these two four-mode contributions
arrive at the two PBS simultaneously, then the two amplitudes will
have a fixed relative phase (denoted by f4) and thus be in a coherent
superposition jHla3jVla4jHlb3jVlb4þ eif4 jVla3jHla4jVlb3jHlb4:
Interestingly, adjusting the position of D1 such that f4 ¼ 0 and
further performing a polarization measurement in the mode pair
a4–b4 in the ^ basis, in our purification protocol the two remaining
photons in a3–b3 will always be converted into the state jFþlab;
which is exactly the desired maximally entangled state. This implies
that the presence of double pair emission into the same mode pair in
no way prevents us from carrying out the purification protocol, but
rather makes the scheme more efficient (see ref. 23 for a detailed
analysis).

Having achieved perfect spatial and temporal overlap and having
fixed the relative phase f4 to zero (see Fig. 3 and the Methods
section), we then experimentally demonstrated entanglement puri-
fication. In the first purification experiment, we prepare r ab in the
mixed state of equation (2) with an entanglement fidelity of
F ¼ 0.75, by randomly setting the half-wave plate axis to be oriented
at ^148 (that is, d ¼ 148). This implies that with a probability of
75%, the photon pairs will be in the desired state jFþlab; and with a
probability of 25% in the unwanted state jW2lab: This is confirmed
by the experimentally measured fractions both in the H/Vand in the
^ bases for the original mixed state, as shown in Fig. 4a and b
respectively.

After purification, provided there is one and only one single
photon detection in each of the modes a4 and b4 along the ^ basis,
we expect the two remaining photons in the modes a3 and b3 to
acquire a high quality of entanglement. To verify this, we first
measure the fractions in the H/V basis for the purified mixed state of
a3–b3. The integration time is about 0.5 h for each of the four
components HH, HV, VH and VV, and we collect about 700 fourfold
coincidences for the maximum (HH or VV) and 60 for the
minimum (HV or VH). The experimental results are shown in
Fig. 4c. Compared with Fig. 4a, the fractions in Fig. 4c clearly
confirm the significant improvement in the purity of the mixed state
in the H/V basis.

Showing the improvement of purity in the H/V basis alone is a
necessary but not a sufficient experimental criterion for the ver-
ification of entanglement purification, because the result in Fig. 4c
is, in principle, both compatible with r

0

ab (highly entangled) and
with a statistical mixture of HH, HV, VH and HH (no entanglement
at all). Thus, to exclude the latter case, we also measure the fractions
of the purified state in the ^ basis. Together with Fig. 4b, the results
in Fig. 4d confirm the enhancement of entanglement well. Figure 4c
and d show the significant improvement in entanglement fidelity,
thus demonstrating the success of entanglement purification. The
fidelity F 0 of the purified sub-ensemble is now about 0.92 ^ 0.01.

As a further demonstration, in a second experiment we also

performed entanglement purification for the mixed state with
fidelity parameter F ¼ 0.80. After performing purification, the
observed entanglement fidelity for the sub-ensemble in the modes
a3 and b3 is about 0.94 ^ 0.01. This again verifies our purification
scheme. It is worth noting that in both experiments, the visibilities
of the original mixed states are 50% and 60%, respectively. However,
after one-step purification the visibilities of the new ensembles are
84% and 88%: these are both well above the threshold above which
Bell’s inequality is violated, and are thus sufficient to ensure secure
quantum communication.

We now briefly analyse the experimental accuracy of our purifi-
cation method. As mentioned above, in our experiment we have two
cases which contribute to the fourfold coincidence, that is, the case
where there is one and only one entangled pair in each of the mode
pairs a1–b1 and a2–b2, and the case where both entangled pairs are
in the same mode pair. Consider an ensemble that is initially
prepared in the mixed state (2). Thus, after purification the first
case will result in a new mixed state that is described by equation (3),
whereas the second case will always result in the desired entangled
state jFþlab: Note that these two cases contribute to the fourfold
coincidence with the same probability. To determine the accuracy
of our method, we first measure the entanglement fidelity of the
pairs in a3–b3 (conditioned on a j þ lj þ l coincidence detection in
a4–b4) before introducing the channel noise. The observed fidelity
is about 0.95, which represents the entanglement quality of the pairs
in a3–b3 contributed from the double pair emission.

After taking into account this imperfection and subtracting the
contribution of the double pair emission, we can calculate the
purification accuracy of the first case. We consider, for example,
the first experiment, in which the original ratio between the desired
state and the unwanted state is 3:1. After purification, the final ratio
of the first case is found to be about 8:1, which is in excellent
agreement with the theoretical value 9:1 (refer to the text after
equation (3)). From the obtained final ratio we can further estimate
the accuracy of local operations at the PBS, which is better than
98%, or equivalently an error probability of at most 2%.

In the present experiment, we report the first demonstration of a
general entanglement purification protocol. Entanglement purifi-

Figure 4 Experimental results. a and b show the experimentally measured fractions both

in the H/V and in the ^ bases for the original mixed state. c and d show the measured

fractions of the purified state in the modes a3 and b3 both in the H/V and in the ^ bases.

Compared with the fractions in a and b, our experimental results shown in c and d

together confirm the success of entanglement purification through the observed reduction

of the fractions of the mixed (H/V and ^) cases.
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cation with high accuracy is important not only for quantum
communication, but also for quantum computation. On the one
hand, together with our recent experimental realization of high-
fidelity teleportation14, the present experiment implies that the
threshold of tolerable error rates in quantum repeaters can be
achieved8. In that sense, we claim that our experimental results
demonstrate for the first time the feasibility of overcoming the
decoherence in scalable quantum communication. This opens up
the possibility of realistic quantum communication over large
distances. On the other hand, with the help of entanglement
purification, the strict accuracy requirements of the gate operations
for fault-tolerant quantum computation can also be significantly
reduced6.

The methods developed in our purification experiment have
many useful applications in the field of linear optics QIP and in
experimental tests of quantum nonlocality. It was noted recently
that, while our set-up directly enables an implementation of a non-
destructive C-NOT gate with a success probability of 25% (ref. 24), a
slight modification of the set-up also provides a simple way to
implement a nonlinear sign gate25—a fundamental element in linear
optics quantum computation26. Furthermore, our methods of
achieving perfect spatial-temporal overlap and phase stabilization
provide the necessary techniques for experimental investigations of
schemes in quantum communication with linear optics and atomic
ensembles27.

Meanwhile, although the requirement of phase stabilization
appears to be a drawback in long-distance quantum communi-
cation, this problem can be solved in our purification scheme by
using entangled photon pairs produced with quantum dots28

instead of by parametric down-conversion. Finally, the two-photon
four-dimensional entanglement exploited in the experiment also
enables us to perform an experimental test of ‘all versus nothing’
quantum nonlocality for two particles29 and high-efficiency
entanglement-assisted quantum cryptography30. A

Methods
Making two independent photons indistinguishable
To make two independent photons indistinguishable, one has to guarantee that the two
photons have good spatial and temporal overlap at the PBS. To achieve this, the two
outputs of the PBS are spectrally filtered (3-nm bandwidth) and monitored by fibre-
coupled detectors (either D a3 and Da4 or D b3 and Db4). While the single-mode fibre
couplers act as spatial filters to guarantee good mode overlap of the detected photons, the
narrow bandwidth filters stretch the coherence time to about 700 fs, substantially larger
than the pump-pulse duration. The filtering process effectively erases any possibility of
distinguishing the two photons according to their arrival time and therefore leads to
interference22.

To meet the condition of temporal overlap, the two photons at the same location
(Alice’s or Bob’s) must arrive at their PBS simultaneously. To achieve this, we first move D1
in small steps to search for the position (denoted by pb) where the two photons in b1 and
b2 have the same arrival time. Then we insert one 458 polarizer into each of the modes b1
and b2 and observe the two-photon Hong–Ou–Mandel (HOM) dip after the PBS by
performing polarization measurements in both modes b3 and b4 in the ^ basis. The
maximum interference occurs at the region of zero delay, that is, at the centre of the HOM
dip. In a similar manner, we can find the position of D1 (denoted by p a) where the two
photons in a1 and a2 have the same arrival time. Fixing the position of D1 at pb and
moving the mirror D2 by a distance pb 2 p a, we can thus roughly achieve temporal
overlap. After this preliminary alignment, we take away the polarizers in the input modes.
Because the polarizers have slightly different time delays, it is necessary to further improve
the temporal overlap both of the mode pair a1–a2 and of the mode pair b1–b2.

Here we exploit a two-photon four-dimensional entangled state23,29. This corresponds
to the case where one and only one entangled pair is created after the pump pulse has
passed through the BBO crystal twice, that is, the entangled photon pair is emitted into a
superposition of the mode pairs a1–b1 and a2–b2. Thus, before the photon pair passes
through the noisy channel the two-photon four-dimensional entangled state can be
written as ðjHlajHlb þ jVlajVlbÞðja1ljb1lþ eif2 ja2ljb2lÞ; where ja1ljb1l and ja2ljb2l
denote the spatial wavefunctions of the photon pair, and their relative phase is f2

determined by the position of the reflection mirror D1. Furthermore, if the amplitudes of
the spatial modes a1–a2 and b1–b2 arrive at their own PBS simultaneously, then after the
four-dimensional entangled state passes through the PBS, the two photons in a4–b4 will be
in the polarization state jHla4jHlb4 þ eif2 jVla4jVlb4: By observing two-photon
interference fringes between the modes a4 and b4, we can then achieve perfect temporal
overlap (see Fig. 3a for details).

Achieving a fixed phase of f4 5 0
Usually, one can find the right position of D1, that is, f4 ¼ 0, by measuring the fourfold
polarization correlation in the ^ basis. However, in the real experiment, owing to the low
fourfold coincidence rate, which was about five per second on average, it is very difficult to
find the correct position of D1 in this way. To achieve f4 ¼ 0, here we again exploit the
two-photon four-dimensional entangled state. Because the two relative phases f4 and f2

satisfy the relation f4 ¼ 2f2; it follows that if f2 ¼ 0, then f4 ¼ 0 (see ref. 23). Indeed, we
can then determine the relative phase by measuring, for example, the polarization
correlation for the two photons in the mode pair a4–b4. Therefore, by inserting a 458

polarizer in each of the output modes a4 and b4 and scanning the reflection mirror D1 we
can observe a two-photon interference sine curve in the mode pair a4–b4. Setting D1 to a
position where a maximum coincidence rate for j þ lj þ l is obtained, we can fix both
phases f4 and f2 to 0.

To have a fixed phase of f4 ¼ 0, phase stabilization is required throughout the whole
measurement. To achieve this, we built the set-up on a thick aluminium platform to avoid
sound resonance, used feedback air-conditioning to avoid thermal expansion of the
interferometer, and built a plastic housing around the set-up to avoid air flow. At the same
time, we also use the twofold coincidence of a4–b4 as a phase monitor. In this way, we are
able to keep the phase stable for several hours. We emphasize that, as opposed to the earlier
multi-photon experiments, here we require interferometric precision and stability where
the scale is the wavelength and is therefore much smaller than coherence stability. This was
particularly difficult and challenging to achieve.
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Nanostructures in which strong (Coulomb) interactions exist
between electrons are predicted to exhibit temporal electronic
correlations1. Although there is ample experimental evidence
that such correlations exist2, electron dynamics in engineered
nanostructures have been observed directly only on long time-
scales3. The faster dynamics associated with electrical currents or
charge fluctuations4 are usually inferred from direct (or quasi-
direct) current measurements. Recently, interest in electron
dynamics has risen, in part owing to the realization that
additional information about electronic interactions can be
found in the shot noise5 or higher statistical moments6,7 of a
direct current. Furthermore, interest in quantum computation
has stimulated investigation of quantum bit (qubit) readout
techniques8,9, which for many condensed-matter systems ulti-
mately reduce to single-shot measurements of individual elec-
tronic charges. Here we report real-time observation of
individual electron tunnelling events in a quantum dot using
an integrated radio-frequency single-electron transistor10,11. We
use electron counting to measure directly the quantum dot’s
tunnelling rate and the occupational probabilities of its charge
state. Our results provide evidence in favour of long (10 ms or
more) inelastic scattering times in nearly isolated dots.

Real-time detection of individual electrons is a formidable task:
the electronic charge is small, and typical timescales for electronic
dynamics are short, ranging from picoseconds to microseconds. We
therefore require a detector with both a low charge noise of dq <
1 £ 1025e Hz21=2 and a fast response time of roughly a microsecond
or less. The recently developed radio-frequency single-electron
transistor (RF-SET)10,11 satisfies both requirements, and we use
such a device as the basis of our detection scheme. Our system of
choice for investigation of charge dynamics is a quantum dot (QD),
a small conducting region in a semiconductor that contains a few to
a few thousand electrons. Sufficiently small QDs contain well-
defined energy levels, and are often referred to as artificial atoms.
A QD is typically connected to macroscopic leads by tunnel barriers,
allowing access to its internal state. Importantly, these tunnel
barriers and other dot properties can be adjusted to allow studies
of electron dynamics.

We have performed measurements on three different samples,
each consisting of a QD and an integrated RF-SET detector. All three

showed similar behaviour, and here we present results from two of
them (S1 and S2). When the QD is formed by application of gate
voltages (Fig. 1a), it contains a well-defined number of electrons N;
at low temperatures and bias voltages N can change only by^1. The
capacitative SET–QD coupling ensures that such a change shifts the
polarization charge Q SET of the SET island by some fraction of an
electronic charge e; typically DQSET < ð0:1–0:2Þe for our samples.
The shift DQ SET changes the differential resistance Rd of the SET,
which in turn allows SET-based electrometry12,13. In radio-fre-
quency (r.f.) operation, changes in Rd modulate the amplitude of
a carrier wave reflected from a resonant circuit containing the SET
(Fig. 1b). Demodulating the carrier wave recovers the modulating
signal (Fig. 1c), forming the basis for real-time measurements of the
QD charge QQD.

When the dot is sufficiently isolated from the surrounding two-
dimensional electron gas (2DEG), we observe switching behaviour
in the RF-SET output (Fig. 1d) reminiscent of random telegraph
signals (RTSs) associated with engineered3 or naturally occur-
ring14,15 charge traps. We have taken pains to ensure that the RTS
we observe is due to individual electron tunnelling events on the
QD. The size of the RTS for S1 as determined by comparison to a
0.05e r.m.s. sine wave (Fig. 1c and d) corresponds to DQSET < 0.1e,

Figure 1 Characterization of RF-SET response. a, Electron micrograph of the sample

design for S1. We begin with a GaAs/AlGaAs heterostructure containing a 2DEG located

190 nm below the sample surface. At 4 K, the 2DEG sheet density is 1.3 £ 1011 cm22

and its mobility is 4.1 £ 106 cm2 V21 s21. The SET consists of a small Al island

connected to a source and drain through small tunnel barriers (total resistance 15 kQ)

formed by a thin AlOx layer and has a charging energy EC SET
¼ e 2/2C SET < 162 meV

where C SET is the total SET capacitance. The SET is superconducting for all

measurements, which were made in a dilution refrigerator at its base temperature of

15 mK. The dot is formed by applying a negative voltage to the Au gates GL1, GL2, GR1, GR2

and GQD, leaving a small pool of electrons at their centre. The SET island extends between

GL1 and GL2 to lie above the QD and maximize sensitivity to its charge. Gate GSET is used to

adjust the SET offset charge QSET. The QD can be coupled by tunnel barriers to its own

source and drain, or isolated completely from them. The dot has an estimated area

A < 200 nm £ 300 nm and contains roughly 80 electrons with an average level spacing

D < 1/Ag2D < 60 meV; here g2D ¼ m*/ph- 2 is the two-dimensional density of states,

and m* is the effective mass of GaAs. b, Power spectral density Pr of a reflected carrier

wave at 1.091 GHz for which QSET is modulated by a 100-kHz, 0.05e r.m.s. sine wave.

For S1, a d.c. SET bias of 500 mV and r.f. amplitude of 87 mV r.m.s. gave a charge

sensitivity of dq < 2.4 £ 1025e Hz21/2 that was relatively insensitive to QSET.

c, Demodulated signal for the reflected wave in b, passed through a low-pass filter (12 dB

per octave, 1 MHz corner frequency) and sampled by a digital oscilloscope. d, RTS

observed when the dot gates are sufficiently energized that the QD tunnelling rate G lies

within our 1-MHz bandwidth.
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